Terroir 2010 banner
IVES 9 IVES Conference Series 9 Influenze pedo-ambientali su produzione, qualità e caratteristiche sensoriali dell’Albana di Romagna

Influenze pedo-ambientali su produzione, qualità e caratteristiche sensoriali dell’Albana di Romagna

Abstract

[English version below]

L’Albana è il vitigno a bacca bianca tradizionale delle colline della Romagna, dove é presente per più di 2.500 ha. Con le sue uve si produce il vino “Albana di Romagna”, una delle più storiche D.O.C.G. italiane essendo stata costituita nel 1987. La maggiore concentrazione di vigneti di Albana si trova nell’Imolese e nelle colline del Ravennate, ma ben conosciuta per la qualità del prodotto é anche la produzione di Bertinoro, nel Forlivese. Nell’ambito di un progetto di zonazione viticola della collina romagnola, il territorio classico dell’Albana é stato sottoposto ad un accurato studio pedologico, climatico, agronomico e viti-enologico. Il complesso dei risultati ha consentito di far emergere alcuni ambienti pedologici in cui l’Albana fornisce vini dalle caratteristiche sensoriali distinguibili.

The Albana is the typical white grapevine variety of the Romagna hills, where it occupies more than 2.500 ha. The Italian DOCG “Albana di Romagna”, created in 1987, is one of the oldest in the country. Highest concentrations of this variety can be found around Imola and the hills of Ravenna although the productions of Bertinoro, in Forlì zone, are well know for their quality. As part of a zoning project of the Romagna hills, the classic territory of the Albana was object of an accurate geo-pedologic, climatic, agronomic and viti-enological assessment. The results have highlighted some environments in which Albana wines display recognisable sensory characteristics.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Zamboni M. (1), Nigro G. (2), Vespignani G. (2), Scotti C. (3), Raimondi S. (3) Simoni M. (4), Antolini G. (5)

(1) Università Cattolica S.C.; Via Emilia Parmense, 84 – 29100 Piacenza, Italia
(2) C.R.P.V. Filiera Vitivinicola e Olivicola; Via Tebano, 54 – Faenza (RA), Italia
(3) I.TER Soc. coop.; Via Brugnoli, 11 – 40122 Bologna, Italia
(4) ASTRA Innovazione e Sviluppo s.r.l. – 48018 Faenza (RA), Italia
(5) ARPA Servizio Idro-Meteo-Clima; Viale Silvan, Italia

Contact the author

Keywords

vite, suolo, zonazione, qualità del vino
grapevine, soil, zoning, wine quality

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Investigations into the effects of a commercial organic fertilizer and of quality compost on the soil and the vines

The influences of quality compost A+ and of a commercial organic fertilizer based on dry mash from bioethanol production, blackstrap molasses, vinasse, PNC (potato nitrogen concentrate) and CSL (corn steep liquor) on the humus content, on the mineral nitrogen content in the soil, in the must and in the vine leaves, on pruning wood

ECA&D: A high-resolution dataset for monitoring climate change and effects on viticulture in Europe

Climate change will lead to persistent changes in temperature and precipitation patterns which will affect the characteristics of wine produced in each region.

Anthocyanin profile is differentially affected by high temperature, elevated CO2 and water deficit in Tempranillo (Vitis vinifera L.) clones

Anthocyanin potential of grape berries is an important quality factor in wine production. Anthocyanin concentration and profile differ among varieties but it also depends on the environmental conditions, which are expected to be greatly modified by climate change in the future. These modifications may significantly modify the biochemical composition of berries at harvest, and thus wine typicity. Among the diverse approaches proposed to reduce the potential negative effects that climate change may have on grape quality, genetic diversity among clones can represent a source of potential candidates to select better adapted plant material for future climatic conditions. The effects of individual and combined factors associated to climate change (increase of temperature, rise of air CO2 concentration and water deficit) on the anthocyanin profile of different clones of Tempranillo that differ in the length of their reproductive cycle were studied. The aim was to highlight those clones more adapted to maintain specific Tempranillo typicity in the future. Fruit-bearing cuttings were grown in controlled conditions under two temperatures (ambient temperature versus ambient temperature + 4ºC), two CO2 levels (400 ppm versus 700 ppm) and two water regimes (well-watered versus water deficit), both in combination or independently, in order to simulate future climate change scenarios. Elevated temperature increased anthocyanin acylation, whereas elevated CO2 and water deficit favoured the accumulation of malvidin derivatives, as well as the acylation and tri-hydroxylation level of anthocyanins. Although the changes in anthocyanin profile observed followed a common pattern among clones, such impact of environmental conditions was especially noticeable in one of the most widely distributed Tempranillo clones, the accession RJ43.

The geological and geomorphological events that determine the soil functional characters of a terroir

The geology of a region is deemed to be an important component of terroir, as it influences the shape of the landscape and the climate of vineyard. The nature of rock and the geomorphological history of a terroir affect soil physical and chemical composition through a dynamic interplay with the changes of climate, vegetation and other living organisms, as well as with man activities.

Modelling leaf water potential from physiological and meteorological variables – A machine learning approach

Viticulture is a key economic sector in the mediterranean region. However, climate change is affecting global viticulture, increasing the frequency of heatwaves and drought events.