Terroir 2010 banner
IVES 9 IVES Conference Series 9 Influenze pedo-ambientali su produzione, qualità e caratteristiche sensoriali dell’Albana di Romagna

Influenze pedo-ambientali su produzione, qualità e caratteristiche sensoriali dell’Albana di Romagna

Abstract

[English version below]

L’Albana è il vitigno a bacca bianca tradizionale delle colline della Romagna, dove é presente per più di 2.500 ha. Con le sue uve si produce il vino “Albana di Romagna”, una delle più storiche D.O.C.G. italiane essendo stata costituita nel 1987. La maggiore concentrazione di vigneti di Albana si trova nell’Imolese e nelle colline del Ravennate, ma ben conosciuta per la qualità del prodotto é anche la produzione di Bertinoro, nel Forlivese. Nell’ambito di un progetto di zonazione viticola della collina romagnola, il territorio classico dell’Albana é stato sottoposto ad un accurato studio pedologico, climatico, agronomico e viti-enologico. Il complesso dei risultati ha consentito di far emergere alcuni ambienti pedologici in cui l’Albana fornisce vini dalle caratteristiche sensoriali distinguibili.

The Albana is the typical white grapevine variety of the Romagna hills, where it occupies more than 2.500 ha. The Italian DOCG “Albana di Romagna”, created in 1987, is one of the oldest in the country. Highest concentrations of this variety can be found around Imola and the hills of Ravenna although the productions of Bertinoro, in Forlì zone, are well know for their quality. As part of a zoning project of the Romagna hills, the classic territory of the Albana was object of an accurate geo-pedologic, climatic, agronomic and viti-enological assessment. The results have highlighted some environments in which Albana wines display recognisable sensory characteristics.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Zamboni M. (1), Nigro G. (2), Vespignani G. (2), Scotti C. (3), Raimondi S. (3) Simoni M. (4), Antolini G. (5)

(1) Università Cattolica S.C.; Via Emilia Parmense, 84 – 29100 Piacenza, Italia
(2) C.R.P.V. Filiera Vitivinicola e Olivicola; Via Tebano, 54 – Faenza (RA), Italia
(3) I.TER Soc. coop.; Via Brugnoli, 11 – 40122 Bologna, Italia
(4) ASTRA Innovazione e Sviluppo s.r.l. – 48018 Faenza (RA), Italia
(5) ARPA Servizio Idro-Meteo-Clima; Viale Silvan, Italia

Contact the author

Keywords

vite, suolo, zonazione, qualità del vino
grapevine, soil, zoning, wine quality

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Phenolic extraction and dissolved oxygen concentration during red wines fermentations with Airmixig M.I.™

During red wine fermentation, the extraction of phenolics compounds and sufficient oxygen provision are critical for wine quality [1,2]. In this trial, we aimed at evaluating the kinetics of phenolic extraction and dissolved oxygen during red wine fermentations using the airmixing system. Twenty lots of red grape musts were fermented in 300.000 L tanks, equipped with airmixing, using two injection regimes (i.e., high and low intensity, and high and low daily frequency). An oxygen analyzer was introduced into the tanks in order to record the concentration of dissolved oxygen over time.

Comparison of various storage conditions to preserve polyphenols in red-grape pomace

Red grape pomace, a waste from wine production, can be valorised by extracting polyphenols, high-added value compounds used in cosmetics or oenology. For use at an industrial level, using green extraction techniques, pomace need to be stored before being processed. The aim of this study is to test various storage conditions in order to maintain high level of polyphenols over 180 days, while keeping storage cost economically interesting. In a first step, different storage conditions (ambient temperature or cooled (4°C) temperature, anaerobic (saturation with N2) or aerobic conditions, and addition of sulphur dioxide (SO2)) were compared on small samples (1 kg) packed in plastic pockets. The quality of storage was assessed by following the optical density of the pomace extract at 280 nm (DO 280 expressed as mg/l eq gallic acid), which is an indication of the amount of remaining extractable polyphenols.

Investigating three proximal remote sensing techniques for vineyard yield monitoring

Yield monitoring can provide the winegrowers with information for precise production inputs during the season, thereby, ensuring the best possible harvest. Yield estimation is currently achieved through an intensive process that is destructive and time-consuming. However, remote sensing provides a group of proximal technologies and techniques for a non-destructive and less time-consuming method for yield monitoring.The objective of this study was to analyse three different approaches, for measuring grapevine yield close to harvest.

Effects of water and nitrogen uptake, and soil temperature, on vine development, berry ripening and wine quality of Cabernet-Sauvignon, Cabernet franc and Merlot (Saint-Emilion, 1997)

Wine quality depends largely on berry ripening conditions in relation to soil and climat. The influence of the soil has been studied in Bordeaux since the early Seventies (SEGUIN, 1970; DUTEAU et al., 1981; VAN LEEUWEN, 1991; VAN LEEUWEN et SEGUIN, 1994) and, more recently, in the Val de Loire (MORLAT, 1989), the Alsace (LEBON, 1993) and the Costières de Nîmes regions (MARTIN, 1995).

Aroma characterization of mold resistant base wines for sparkling wine produced in a warm-temperate area at two different altitudes

In a recent context where consumers pay an increasing attention to sustainability and eco-friendly aspects in the decision-making process, the use of the resistant varieties in the wine sector have returned to the attention. In this context, the use of mould-resistant grape varieties would be an opportunity for sparkling wine producers as it can reduced the pesticide utilization in grape management and hence production costs.
However, the use of the resistant varieties to produce the base wine may be strongly influenced due to its requirements for a particular balance between sugars and acidity to ensure the quality of the final product. In addition, the aromatic profile of base wine plays a crucial role in the perception of the quality of the sparkling wine.