Terroir 2010 banner
IVES 9 IVES Conference Series 9 Influenze pedo-ambientali su produzione, qualità e caratteristiche sensoriali dell’Albana di Romagna

Influenze pedo-ambientali su produzione, qualità e caratteristiche sensoriali dell’Albana di Romagna

Abstract

[English version below]

L’Albana è il vitigno a bacca bianca tradizionale delle colline della Romagna, dove é presente per più di 2.500 ha. Con le sue uve si produce il vino “Albana di Romagna”, una delle più storiche D.O.C.G. italiane essendo stata costituita nel 1987. La maggiore concentrazione di vigneti di Albana si trova nell’Imolese e nelle colline del Ravennate, ma ben conosciuta per la qualità del prodotto é anche la produzione di Bertinoro, nel Forlivese. Nell’ambito di un progetto di zonazione viticola della collina romagnola, il territorio classico dell’Albana é stato sottoposto ad un accurato studio pedologico, climatico, agronomico e viti-enologico. Il complesso dei risultati ha consentito di far emergere alcuni ambienti pedologici in cui l’Albana fornisce vini dalle caratteristiche sensoriali distinguibili.

The Albana is the typical white grapevine variety of the Romagna hills, where it occupies more than 2.500 ha. The Italian DOCG “Albana di Romagna”, created in 1987, is one of the oldest in the country. Highest concentrations of this variety can be found around Imola and the hills of Ravenna although the productions of Bertinoro, in Forlì zone, are well know for their quality. As part of a zoning project of the Romagna hills, the classic territory of the Albana was object of an accurate geo-pedologic, climatic, agronomic and viti-enological assessment. The results have highlighted some environments in which Albana wines display recognisable sensory characteristics.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Zamboni M. (1), Nigro G. (2), Vespignani G. (2), Scotti C. (3), Raimondi S. (3) Simoni M. (4), Antolini G. (5)

(1) Università Cattolica S.C.; Via Emilia Parmense, 84 – 29100 Piacenza, Italia
(2) C.R.P.V. Filiera Vitivinicola e Olivicola; Via Tebano, 54 – Faenza (RA), Italia
(3) I.TER Soc. coop.; Via Brugnoli, 11 – 40122 Bologna, Italia
(4) ASTRA Innovazione e Sviluppo s.r.l. – 48018 Faenza (RA), Italia
(5) ARPA Servizio Idro-Meteo-Clima; Viale Silvan, Italia

Contact the author

Keywords

vite, suolo, zonazione, qualità del vino
grapevine, soil, zoning, wine quality

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Water deficit differentially impacts the performances and the accumulation of grape metabolites of new varieties tolerant to fungi

The use of resistant varieties is a long-term but promising solution to reduce chemical input in viticulture. Several important breeding programs in Europe and abroad are now releasing a range of new hybrids performing well regarding fungi susceptibility and producing good quality wines. Unfortunately, insufficient attention is paid by the breeders to the adaptation of these varieties to climatic changes, notably to the increased climatic demand and water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD. This study aimed to characterize the different drought-strategies adopted by 6 new resistant varieties selected by INRAE in comparison to Syrah. To allow the assessment of long-term impacts of WD, field-grown vines were exposed to contrasted WD from 2018 to 2021 under a semi-arid Mediterranean climate. A gradient of WD was applied in the field and controlled through plant measurements at the single plant level. Grape development was non-destructively monitored to determine the arrest of berry phloem unloading. The impacts of WD on berry composition, including water, primary metabolites (sugars, organic acids), secondary metabolites (anthocyanins, thiols precursors) and main cations contents, were assessed at this specific stage. Results showed different varietal responses during the year and inter-annual acclimation in terms of plant water use efficiency, biomass accumulation, as well as yield components and berry composition. WD differentially reduced the accumulation of primary metabolites at plant and berry levels, but it little changed their concentrations in the fruits at the ripe stage. Moreover, WD differentially impacted the accumulation of secondary metabolites and major cations between the varieties. In the talk, we’ll present the main results regarding the WD impacts on fruit metabolites and enlarge the reflection about the practical assessment of the grapevine acclimation to WD.

Apoplastic pH influences Vitis vinifera Barbera recovery responses to short and prolonged drought 

Alteration of sap pH is one of the first chemical changes that occurs within the xylem vessels of plants exposed to drought. Xylem sap acidification accompanied by the accumulation of soluble sugars has been recently documented in several species (Sharp and Davis, 2009; Secchi and Zwieniecki, 2016). Here, Vitis vinifera plants of the anysohydric cultivar Barbera were exposed to either short (no irrigation; SD) or to prolonged drought (continual reduction of 10% water; PD). When comparable severe stress was reached, the potted grapes were re-watered. SD was characterized by fast (2–3 days) stomatal closure and high abscisic acid (ABA) accumulation in xylem sap (>400 μg L−1) and in leaf. In PD plants, the rise in ABA levels was considerably diminished.

Adaptability of grapevines to climate change: characterization of phenology and sugar accumulation of 50 varieties, under hot climate conditions

Climate is the major factor influencing the dynamics of the vegetative cycle and can determine the timing of phenological periods. Knowledge of the phenology of varieties, their chronological duration, and thermal requirements, allows not only for the better management of interventions in the vineyard, but also to predict the varieties’ behaviour in a scenario of climate change, giving the wine producer the possibility of selecting the grape varieties that are best adapted to the climatic conditions of a certain terroir. In 2014, Symington Family Estates, Vinhos, established two grape variety libraries in two different places with distinctive climate conditions (Douro Superior, and Cima Corgo), with the commitment of contributing to a deeper agronomic and oenological understanding of some grape varieties, in hot climate conditions. In these research vineyards are represented local varieties that are important in the regional and national viticulture, but also others that have over time been forgotten — as well as five international reference cultivars. From 2017 to 2021, phenological observations have been made three times a week, following a defined protocol, to determine the average dates of budbreak, flowering and veraison. With the climate data of each location, the thermal requirements of each variety and the chronological duration of each phase have been calculated. During maturation, berry samples have been gathered weekly to study the dynamics of sugar accumulation, between other parameters. The data was analysed applying phenological and sugar accumulation models available in literature. The results obtained show significant differences between the varieties over several parameters, from the chronological duration and thermal requirements to complete the various stages of development, to the differences between the two locations, confirming the influence of the climate on phenology and the stages of maturation, in these specific conditions.

The soil biodiversity as a support to environmental sustainability in vineyard

The environmental biodiversity is important to guarantee essential services to the living communities, its richness is a symptom of a minor disturbance and improves he environment biological quality.

Agronomical assessment of a vine « terroir » map: first results in the « AOC » Minervois region

Minervois is a vine region where the first detailed soil map was begun 30 years ago. In 2003, a new map was drawn plotting the soil-landscape associations. This map distinguishes 8 large soil units based on geology. The widest (called « marnes ») is the most complex : it is made of 57 sub-units, which leads to a high variability of the vine behaviour on this unit.