Terroir 2010 banner
IVES 9 IVES Conference Series 9 The terroir of Carnuntum: investigation of the physiogeographic characteristics and interdisciplinary study of viticultural functions of the Carnuntum wine district, Austria

The terroir of Carnuntum: investigation of the physiogeographic characteristics and interdisciplinary study of viticultural functions of the Carnuntum wine district, Austria

Abstract

During a three-year period, the vineyards of the Carnuntum wine district are investigated for their terroir characteristics. The interdisciplinary study is aimed at the description of the physiogeographic properties of the region and at the investigation of the main viticulture functions by means of climatology parameters, geological compilation, detailed mapping of the quaternary loess/loam cover of the region, detailed soil mapping, hydrologic investigation and mineralogical, sedimentological and geochemical analyses of soil and bedrock. Additionally, winegrowers of the region are asked to complete a questionnaire regarding their experience because their local and regional knowledge plays an important part in the study. The objective of the study is to compile thematic and synoptical maps by means of GIS as a first comprehensive examination of the natural factors of environment.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type : Article

Authors

M. Heinrich (1), H. Reitner (1), A. Baumgarten (2), J. Eitzinger (3), Th. Gerersdorfer (3), J. Graßl (4), W. Laube (3), E. Murer (5), H. Pirkl (6), H. Spiegel (2), I.Wimmer-Frey (1)

(1) Geological Survey of Austria, Neulinggasse 38, A-1030 Vienna, Austria
(2) Austrian Agency for Health and Food Safety, Institute for Soil Health and Plant Nutrition, Spargelfeldstr. 191, A-1226 Vienna, Austria
(3) University of Natural Resources and Applied Life Sciences, Institute of Meteorology, Peter Jordan Str. 82, A-1190 Vienna, Austria
(4) Die Rubin Carnuntum Weingüter, Carnuntum Wine Region Cooperation, Fischamenderstr. 12/3, A-2460 Bruck an der Leitha, Austria
(5) Federal Agency for Water Management, Institute for Land and Water Management Research Pollnbergstraße 1, A-3252 Petzenkirchen, Austria
(6) Geological Office, Plenergasse 5/27, A-1180 Wien, Austria

Contact the author

Keywords

Austria, terroir, geology, soil, climate, questionnaire, GIS

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

OPTIMISATION OF THE AROMATIC PROFILE OF UGNI BLANC WINE DISTILLATE THROUGH THE CONTROL OF ALCOHOLIC FERMENTATION

The online monitoring of fermentative aromas provides a better understanding of the effect of temperature on the synthesis and the loss of these molecules. During fermentation, gas and liquid phase concentrations as well as losses and total productions of volatile compounds can be followed with an unprecedented acquisition frequency of about one measurement per hour. Access to instantaneous production rates and total production balances for the various volatile compounds makes it possible to distinguish the impact of temperature on yeast production (biological effect) from the loss of aromatic molecules due to a physical effect³.

Contribution à l’étude des relations entre des variables de fonctionnement des terroirs du Val de Loire et l’évolution des acides organiques des baies durant la maturation du raisin

Dans les terroirs du Val de Loire, la précocité du cycle de la vigne et son alimentation en eau sont des variables de fonctionnement qui influent de manière importante sur la composition des baies à maturité.

Understanding the genetic determinism of phenological and quality traits in ‘Corvina’ grape variety for selection of improved genotypes

Downy and powdery mildew are major issues in grapevine cultivation, requiring many phytosanitary treatments to ensure yield and quality. Climatic changes are also challenging grape cultivation

Development of a new method for detecting acetic acid bacteria in wine

The presence of acetic acid bacteria in wine can lead to the appearance of acetic acid at concentrations above the perception threshold, causing the wine rejection by the consumer. During the winemaking process, avoiding the presence of acetic acid bacteria is very difficult, as there is always a residual population accompanying the wine[1], and the problem arises with the significant development of these microorganisms that metabolizes large amounts of acetic acid.
The concern of wineries to control the presence of acetic acid bacteria in wines during their conservation is due to the absence of simple and effective analyses that allow the detection of these microorganisms in the initial stages.

Use of uv light for suppression of grapevine diseases

Microbial pathogens of plant have evolved to sense, interpret, and use light to direct their development. One aspect of this evolved relationship is photolyase-mediated repair of UV-induced damage to pathogen DNA. Application of germicidal UV (UV-C) at night circumvents the blue light-driven repair of pathogen DNA and allows non-phytotoxic doses of UV-C to suppress a variety of pathogenic microbes and even certain arthropod pests without damage to vines or fruit. Lamps arrays have been designed specifically for the canopy architecture of grapevines and have been deployed on both tractor-drawn and robotic carriages for partial to near-complete suppression of powdery mildew (Erysiphe necator), sour rot (fungal, bacterial, and arthropod complex), and downy mildew (Plasmopara viticola).