Terroir 2010 banner
IVES 9 IVES Conference Series 9 The terroir of Carnuntum: investigation of the physiogeographic characteristics and interdisciplinary study of viticultural functions of the Carnuntum wine district, Austria

The terroir of Carnuntum: investigation of the physiogeographic characteristics and interdisciplinary study of viticultural functions of the Carnuntum wine district, Austria

Abstract

During a three-year period, the vineyards of the Carnuntum wine district are investigated for their terroir characteristics. The interdisciplinary study is aimed at the description of the physiogeographic properties of the region and at the investigation of the main viticulture functions by means of climatology parameters, geological compilation, detailed mapping of the quaternary loess/loam cover of the region, detailed soil mapping, hydrologic investigation and mineralogical, sedimentological and geochemical analyses of soil and bedrock. Additionally, winegrowers of the region are asked to complete a questionnaire regarding their experience because their local and regional knowledge plays an important part in the study. The objective of the study is to compile thematic and synoptical maps by means of GIS as a first comprehensive examination of the natural factors of environment.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type : Article

Authors

M. Heinrich (1), H. Reitner (1), A. Baumgarten (2), J. Eitzinger (3), Th. Gerersdorfer (3), J. Graßl (4), W. Laube (3), E. Murer (5), H. Pirkl (6), H. Spiegel (2), I.Wimmer-Frey (1)

(1) Geological Survey of Austria, Neulinggasse 38, A-1030 Vienna, Austria
(2) Austrian Agency for Health and Food Safety, Institute for Soil Health and Plant Nutrition, Spargelfeldstr. 191, A-1226 Vienna, Austria
(3) University of Natural Resources and Applied Life Sciences, Institute of Meteorology, Peter Jordan Str. 82, A-1190 Vienna, Austria
(4) Die Rubin Carnuntum Weingüter, Carnuntum Wine Region Cooperation, Fischamenderstr. 12/3, A-2460 Bruck an der Leitha, Austria
(5) Federal Agency for Water Management, Institute for Land and Water Management Research Pollnbergstraße 1, A-3252 Petzenkirchen, Austria
(6) Geological Office, Plenergasse 5/27, A-1180 Wien, Austria

Contact the author

Keywords

Austria, terroir, geology, soil, climate, questionnaire, GIS

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Maturation under different SO2 environments: the impact on amino acid and volatile profile for two white wines

EU countries are in the top 16 of the world’s wine producers. To respond to a public health concern, caused by SO2 excessive exposure

Identification and biological properties of new resveratrol derivatives formed in red wine

Resveratrol is a well-known wine constituent with a wide range of activities. In wines, resveratrol can be oxidized to form various derivatives including oligomers [1]. In this study, resveratrol derivative transformation in hydroalcoholic solution was investigated by oxidative coupling using metals. De novo resveratrol derivatives were synthetized and analysed by NMR and MS experiments

Impact of GoLo technology on the aroma profile of red and white wines after total and partial dealcoholisation

Wine dealcoholisation has been practised since the early 1900s and has gained importance due to climate change
and shifting consumer preferences for lower-alcohol beverages. Rising temperatures are accelerating grape
ripening, increasing sugar content and, consequently, raising the alcohol strength of wines.

Phenolic compounds present in natural haze protein of Sauvignon white wine

The aim of this work was the identification and quantification of polyphenols present in natural precipitate of a Sauvignon wine. Phenol analysis in wine precipitate was based on acid hydrolysis, CG- MS after derivatization, and LC-MS.

Vineyards and clay minerals: multi-technique analytical approach and correlations with soil properties

Purpose of this research is to quantitatively assess the mineral component of vineyard soils, with particular attention to the mineralogical analysis of clays, which represent an element of high importance in the vineyard culture as well as in general agriculture. An X-ray diffraction (XRD) / thermogravimetric (TG) multi-technique analytical approach was developed, tested on soil samples taken from vineyards around the world. This codified analytical procedure was necessary to obtain precise qualitative and quantitative mineralogical data, globally comparable to distinguish the geopedological identity of the vineyards. Soil samples from vineyards of various locations were analysed, in very different geological conditions. The bulk-rock quantitative phase analysis (QPA) was obtained by the Rietveld method while the detailed composition of the clay-sized fraction was determined by modelling of the oriented X-ray diffraction patterns. The research provided a precise classification of the mineral component of soils, distinguishing the mineral phases of the clays and the so-called mixed-layer clay minerals. We found that the content in mixed layers can be directly correlated with the water retention and the cation exchange capacity ​​of the soil, while the presence of other clayey minerals and phyllosilicates in this research did not affect this CEC parameter, which codes the fertility level of the soils. The study demonstrates that terroir, in particular soils formed in complex or very different geological conditions, can only be effectively interpreted by properly analysing its mineral phases, in particular the mixed-layer clay component. These are characteristic abiotic ecological indicators, which may have specific eco-physiological influences on the plant.