Terroir 2010 banner
IVES 9 IVES Conference Series 9 The terroir of Carnuntum: investigation of the physiogeographic characteristics and interdisciplinary study of viticultural functions of the Carnuntum wine district, Austria

The terroir of Carnuntum: investigation of the physiogeographic characteristics and interdisciplinary study of viticultural functions of the Carnuntum wine district, Austria

Abstract

During a three-year period, the vineyards of the Carnuntum wine district are investigated for their terroir characteristics. The interdisciplinary study is aimed at the description of the physiogeographic properties of the region and at the investigation of the main viticulture functions by means of climatology parameters, geological compilation, detailed mapping of the quaternary loess/loam cover of the region, detailed soil mapping, hydrologic investigation and mineralogical, sedimentological and geochemical analyses of soil and bedrock. Additionally, winegrowers of the region are asked to complete a questionnaire regarding their experience because their local and regional knowledge plays an important part in the study. The objective of the study is to compile thematic and synoptical maps by means of GIS as a first comprehensive examination of the natural factors of environment.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type : Article

Authors

M. Heinrich (1), H. Reitner (1), A. Baumgarten (2), J. Eitzinger (3), Th. Gerersdorfer (3), J. Graßl (4), W. Laube (3), E. Murer (5), H. Pirkl (6), H. Spiegel (2), I.Wimmer-Frey (1)

(1) Geological Survey of Austria, Neulinggasse 38, A-1030 Vienna, Austria
(2) Austrian Agency for Health and Food Safety, Institute for Soil Health and Plant Nutrition, Spargelfeldstr. 191, A-1226 Vienna, Austria
(3) University of Natural Resources and Applied Life Sciences, Institute of Meteorology, Peter Jordan Str. 82, A-1190 Vienna, Austria
(4) Die Rubin Carnuntum Weingüter, Carnuntum Wine Region Cooperation, Fischamenderstr. 12/3, A-2460 Bruck an der Leitha, Austria
(5) Federal Agency for Water Management, Institute for Land and Water Management Research Pollnbergstraße 1, A-3252 Petzenkirchen, Austria
(6) Geological Office, Plenergasse 5/27, A-1180 Wien, Austria

Contact the author

Keywords

Austria, terroir, geology, soil, climate, questionnaire, GIS

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

EFFECTS OF HYDROXYTYROSOL ON THE CHEMICAL PROFILE AND SENSORY ATTRIBUTES OF A RED TUSCAN WINE

The chemical profile and sensory attributes were studied in Borrigiano IGT Toscana wine (Italy), a blend of Sangiovese 85% and Cabernet Sauvignon 15% grapes harvested in September 2020, where 2-(3,4-dihydroxyphenyl)ethanol (hydroxytyrosol, HT, [1]) was added to a 750-ml wine bottle in 3 different amounts (30, 60, 120 mg) and compared with the control (no HT addition). The study aimed to evaluate whether Polyphenol-HT1®, a high purity HT (>99%) produced by Nova Mentis using biotechnology, could be used as a supplement to sulfites and how it would impact the sensory and chemical profile of this wine [2]. Each sample was prepared in triplicate.

Impact of industrial-scale serial filtration on macromolecules in red wines

Filtration is a critical step in ensuring the clarity and microbial stability of wine prior to bottling. However the process of filtering potentially reduces red wine quality by removing some of the macromolecules that contribute to the texture of the wine. Commercial red wines, Cabernet Sauvignon (CAS) and Shiraz (SHZ), of two vintages and two grades (premium grade wines from the older vintage: CAS13 and SHZ13; and standard grade wines from a younger vintage: CAS14 and SHZ14) were filtered through industrial-scale commercial filtration units prior to bottling. Samples were taken before and after cross-flow filtration, lenticular filters, 0.65 µm and 0.45 µm pore size nylon membrane filters. The concentration and composition of macromolecules, including tannins and polysaccharides, were measured in all samples as well as particle size distribution and wine colour.

Development of a novel UAV based approach for assessing the severity of spring frost and hail damages in vineyards

A solid feature of climate change is that the frequency and severity of weather extremes are increasing. Ranking European countries for the number of crop failures related to extreme events reports France on top followed by Italy and Spain (COM 2021).

Impact of fining agents on Swiss Pinot noir red wines

In the context of climate change, excessive bitterness and astringency in wines have become increasingly prevalent. While variety selection and viticultural practices offer long-term solutions, they require considerable time before yielding practical results. In contrast, fining remains an accessible and immediate tool for winemakers.

Soil, vine, climate change – what is observed – what is expected

To evaluate the current and future impact of climate change on Viticulture requires an integrated view on a complex interacting system within the soil-plant-atmospheric continuum under continuous change. Aside of the globally observed increase in temperature in basically all viticulture regions for at least four decades, we observe several clear trends at the regional level in the ratio of precipitation to potential evapotranspiration. Additionally the recently published 6th assessment report of the IPCC (The physical science basis) shows case-dependent further expected shifts in climate patterns which will have substantial impacts on the way we will conduct viticulture in the decades to come.
Looking beyond climate developments, we observe rising temperatures in the upper soil layers which will have an impact on the distribution of microbial populations, the decay rate of organic matter or the storage capacity for carbon, thus affecting the emission of greenhouse gases (GHGs) and the viscosity of water in the soil-plant pathway, altering the transport of water. If the upper soil layers dry out faster due to less rainfall and/or increased evapotranspiration driven by higher temperatures, the spectral reflection properties of bare soil change and the transport of latent heat into the fruiting zone is increased putting a higher temperature load on the fruit. Interactions between micro-organisms in the rhizosphere and the grapevine root system are poorly understood but respond to environmental factors (such as increased soil temperatures) and the plant material (rootstock for instance), respectively the cultivation system (for example bio-organic versus conventional). This adds to an extremely complex system to manage in terms of increased resilience, adaptation to and even mitigation of climate change. Nevertheless, taken as a whole, effects on the individual expressions of wines with a given origin, seem highly likely to become more apparent.