Terroir 2010 banner
IVES 9 IVES Conference Series 9 Elementi in traccia e ultratraccia nell’uva: possibili applicazioni ai fini della tracciabilità geografica

Elementi in traccia e ultratraccia nell’uva: possibili applicazioni ai fini della tracciabilità geografica

Abstract

[English version below]

Nel presente studio si è ricercata la possibilità di associare l’uva al territorio mediante parametri chimici indipendenti da variabili climatiche ed antropiche.
Nei Colli Euganei, la presenza di vitigni allevati su terreni con un’elevata eterogeneità geochimica in un areale ristretto, ha permesso di minimizzare tali variabili oggetto di disturbo ai fini della comprensione dei processi di mobilità degli elementi dal suolo alla vite, in funzione del luogo di coltivazione. Sono stati prelevati campioni di suolo ed uva provenienti da aree differenti, determinate le concentrazioni di alcuni elementi in traccia ed ultratraccia e ricercate possibili correlazioni in funzione dell’areale di allevamento.

In this study we sought the possibility of linking the grape vine to the territory by using chemical parameters not related to anthropogenic climatic variables. In the Euganenan Hills, the presence of vines grown on soils with high geochemical heterogeneity in a narrow range, allowed us to minimize these variables usually interfering with understanding the process of mobility of elements from soil to vine, depending on the site of cultivation. Soil samples and grapes from different areas have been collected and have been determined the concentrations of certain trace and ultra trace elements and have been sought possible correlations according to the breeding area.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type : Article

Authors

F. A. Faccia (1), C. Vaccaro (1), L. Sansone (2), E. Marrocchino (1), R. Tassinari (1)

(1) Dipartimento di Scienze della Terra, Università di Ferrara, Via Saragat 1, 44100 Ferrara, Italia
(2) CRA-Centro di ricerca per la viticoltura, Viale XXVIII Aprile 26, 31015 Conegliano (TV), Italia

Contact the author

Keywords

Colli Euganei, tracciabilità, impronta digitale, suolo, alimenti, uva, elementi in traccia

Euganean Hills, traceability, fingerprint, soil, food, grape, trace elements

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

The use of pulsed fluorescence detector to quantify free SO2 in wines via the headspace

Pulsed fluorescence SO2 analyzers are widely used for atmospheric monitoring. They are accurate, portable, sensitive and their price are reduced compared to advanced techniques like gas chromatography with sulfur chemiluminescence detection (GC-SCD).

Deciphering the function and regulation of VviEPFL9 paralogs to modulate stomatal density in grapevine through New Genomic Techniques

Stomata are microscopic pores mainly located in leaf epidermis, allowing gas exchanges between plants and atmosphere. Stomatal initiation relies on the transcription factor SPEECHLESS which is mainly regulated by the MAP kinase cascade, in turn controlled by small signaling peptides, the Epidermal Patterning Factors (EPF and EPF-Like), namely EPF1, EPF2 and EPFL9. While EPF1 and EPF2 induce the inhibition of SPEECHLESS, their antagonist, EPFL9, stabilizes it, leading to stomatal formation. In grapevine, there are two paralogs for EPFL9, VviEPFL9-1 and VviEPFL9-2. Despite their structural similarity, it remains unclear whether they are differentially regulated and have distinct roles.

Green berries on Gewürztraminer (Vitis vinifera L.) in South Tyrol (Italy)

The grape variety Gewürztraminer is known to be affected by two physiological disorders namely berry shrivel and bunch stem necrosis. During the season 2014 we noticed a new symptomatology type of ripening disorder on the variety. The new symptom showed not all berries fallowing the normal maturation stages, but single berries remaining at a soft but green stage till harvest. The broad distribution of these so called “green berries” symptoms in different production sites of our region, caused huge damage due to the difficulty of eliminating single berries per bunch before harvesting. Therefore, the Research Centre Laimburg began to investigate the reasons and origins of this new symptom. This work shows the results of first attempts to find causes for the symptom as well as the resulting approach to mitigate symptoms. Applications of magnesium leaf fertilizer showed first promising results against this putative disorder. To study the causal effect of the green berries 30 symptomatic vineyards in 2014 have been selected for a monitoring during the season 2016. To evaluate the foliar nutrient treatment two vineyards have been selected for application of magnesium sulfate and magnesium chloride. Leaf and berry nutrient analysis, as well as the main quality parameters during ripening have been performed. As soon as “green berries” symptoms appeared, incidence and severity have been evaluated. Most of the symptomatic vineyards of the 2016 monitoring showed light to clear magnesium deficit symptoms on their foliage. Only during the seasons 2020 and 2021 “green berries” symptoms could be found in the leaf fertilizer treatment vineyards. Both seasons showed a significant effect of the magnesium treatments to reduce the incidence and severity of the symptom. It seems that the appearance of the “green berries” symptom on Gewürztraminer is correlated to a disturbed uptake of magnesium of the vines.

Impact of pedoclimatical conditions on the precocity potential of vineyards in the canton of Geneva

Terroir studies are common nowadays but few have used precise pedoclimatic measures in order to evaluate the precocity potential. The objectives of this work were (i) to assess the effect of main terroir parameters (soil, climate and topography) influencing the phenological development of the vine, and (ii) to evaluate a geostatistic approach by using a high number of already existing plots (higher variability) to analyze the terroir parameters’ impact.

Rootstock effects on Grüner Veltliner ecophysiology in the Kremstal wine region of Austria

Understanding the impact of rootstocks on grapevine water relations is crucial to face climate change maintaining vineyard productivity and sustainability.