Terroir 2010 banner
IVES 9 IVES Conference Series 9 Elementi in traccia e ultratraccia nell’uva: possibili applicazioni ai fini della tracciabilità geografica

Elementi in traccia e ultratraccia nell’uva: possibili applicazioni ai fini della tracciabilità geografica

Abstract

[English version below]

Nel presente studio si è ricercata la possibilità di associare l’uva al territorio mediante parametri chimici indipendenti da variabili climatiche ed antropiche.
Nei Colli Euganei, la presenza di vitigni allevati su terreni con un’elevata eterogeneità geochimica in un areale ristretto, ha permesso di minimizzare tali variabili oggetto di disturbo ai fini della comprensione dei processi di mobilità degli elementi dal suolo alla vite, in funzione del luogo di coltivazione. Sono stati prelevati campioni di suolo ed uva provenienti da aree differenti, determinate le concentrazioni di alcuni elementi in traccia ed ultratraccia e ricercate possibili correlazioni in funzione dell’areale di allevamento.

In this study we sought the possibility of linking the grape vine to the territory by using chemical parameters not related to anthropogenic climatic variables. In the Euganenan Hills, the presence of vines grown on soils with high geochemical heterogeneity in a narrow range, allowed us to minimize these variables usually interfering with understanding the process of mobility of elements from soil to vine, depending on the site of cultivation. Soil samples and grapes from different areas have been collected and have been determined the concentrations of certain trace and ultra trace elements and have been sought possible correlations according to the breeding area.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type : Article

Authors

F. A. Faccia (1), C. Vaccaro (1), L. Sansone (2), E. Marrocchino (1), R. Tassinari (1)

(1) Dipartimento di Scienze della Terra, Università di Ferrara, Via Saragat 1, 44100 Ferrara, Italia
(2) CRA-Centro di ricerca per la viticoltura, Viale XXVIII Aprile 26, 31015 Conegliano (TV), Italia

Contact the author

Keywords

Colli Euganei, tracciabilità, impronta digitale, suolo, alimenti, uva, elementi in traccia

Euganean Hills, traceability, fingerprint, soil, food, grape, trace elements

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Impact of Metschnikowia pulcherrima and Saccharomyces cerevisiae in mixed fermentation on volatile compounds and energy sustainability in Lugana wine

In recent years, heightened awareness of the environmental impact has led to sustainability as a key issue for the winemaking sector.

Identification of γ-nonalactone precusor in Merlot and Cabernet-Sauvignon grapes

Wine flavor results on complexes interactions of odorous components, which come from different aromatic families like esters, thiols, aldehydes, pyrazines or lactones.

Back to the roots: how an underutilised biotechnological tool can support research to improve grapevine resilience against biotic stressors in an unpredictable future

Hairy roots (HRs) are a symptom of a natural genetic modification by the soil-borne phytopathogen Rhizobium rhizogenes.

Adaptability of grapevines to climate change: characterization of phenology and sugar accumulation of 50 varieties, under hot climate conditions

Climate is the major factor influencing the dynamics of the vegetative cycle and can determine the timing of phenological periods. Knowledge of the phenology of varieties, their chronological duration, and thermal requirements, allows not only for the better management of interventions in the vineyard, but also to predict the varieties’ behaviour in a scenario of climate change, giving the wine producer the possibility of selecting the grape varieties that are best adapted to the climatic conditions of a certain terroir. In 2014, Symington Family Estates, Vinhos, established two grape variety libraries in two different places with distinctive climate conditions (Douro Superior, and Cima Corgo), with the commitment of contributing to a deeper agronomic and oenological understanding of some grape varieties, in hot climate conditions. In these research vineyards are represented local varieties that are important in the regional and national viticulture, but also others that have over time been forgotten — as well as five international reference cultivars. From 2017 to 2021, phenological observations have been made three times a week, following a defined protocol, to determine the average dates of budbreak, flowering and veraison. With the climate data of each location, the thermal requirements of each variety and the chronological duration of each phase have been calculated. During maturation, berry samples have been gathered weekly to study the dynamics of sugar accumulation, between other parameters. The data was analysed applying phenological and sugar accumulation models available in literature. The results obtained show significant differences between the varieties over several parameters, from the chronological duration and thermal requirements to complete the various stages of development, to the differences between the two locations, confirming the influence of the climate on phenology and the stages of maturation, in these specific conditions.

Soil monoliths, soil variability and terroir

Aim: The aim of this work is educating people about soil variability and terroir. Soil monoliths are used to educate the wine industry about how to describe a soil profile, interpret the soil formation processes operating in a particular soil profile and consequently the impact of soil properties on vine growth, fruit quality and wine production. Soil monoliths are a permanent artistic tool for educating, research and management of soil variability.