Terroir 2010 banner
IVES 9 IVES Conference Series 9 Elementi in traccia e ultratraccia nell’uva: possibili applicazioni ai fini della tracciabilità geografica

Elementi in traccia e ultratraccia nell’uva: possibili applicazioni ai fini della tracciabilità geografica

Abstract

[English version below]

Nel presente studio si è ricercata la possibilità di associare l’uva al territorio mediante parametri chimici indipendenti da variabili climatiche ed antropiche.
Nei Colli Euganei, la presenza di vitigni allevati su terreni con un’elevata eterogeneità geochimica in un areale ristretto, ha permesso di minimizzare tali variabili oggetto di disturbo ai fini della comprensione dei processi di mobilità degli elementi dal suolo alla vite, in funzione del luogo di coltivazione. Sono stati prelevati campioni di suolo ed uva provenienti da aree differenti, determinate le concentrazioni di alcuni elementi in traccia ed ultratraccia e ricercate possibili correlazioni in funzione dell’areale di allevamento.

In this study we sought the possibility of linking the grape vine to the territory by using chemical parameters not related to anthropogenic climatic variables. In the Euganenan Hills, the presence of vines grown on soils with high geochemical heterogeneity in a narrow range, allowed us to minimize these variables usually interfering with understanding the process of mobility of elements from soil to vine, depending on the site of cultivation. Soil samples and grapes from different areas have been collected and have been determined the concentrations of certain trace and ultra trace elements and have been sought possible correlations according to the breeding area.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type : Article

Authors

F. A. Faccia (1), C. Vaccaro (1), L. Sansone (2), E. Marrocchino (1), R. Tassinari (1)

(1) Dipartimento di Scienze della Terra, Università di Ferrara, Via Saragat 1, 44100 Ferrara, Italia
(2) CRA-Centro di ricerca per la viticoltura, Viale XXVIII Aprile 26, 31015 Conegliano (TV), Italia

Contact the author

Keywords

Colli Euganei, tracciabilità, impronta digitale, suolo, alimenti, uva, elementi in traccia

Euganean Hills, traceability, fingerprint, soil, food, grape, trace elements

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Investigating the role of endophytes in enhancing grapevine resilience to drought

Grapevine is a crop of great economic importance for several countries. The intensification of grapevine production has mostly been sustained by the increasing use of water resources at the expense of the environmental water balance. Moreover, in the last decades, climate change and the consequent expansion of drought have further compromised water availability, making current agricultural systems even more fragile both ecologically and economically. Recently, many research groups have highlighted the important role of endophytes in facilitating plant growth under optimal or stressful conditions. Within the framework of the PRIMA project, we aim to investigate the possible exploitation of the natural endophyte biodiversity as a sustainable tool to make grapevine plants more resilient to water deficit environmental conditions.

Drought affects vineyard soil microbiome: approach to select micro-organisms adapted to drought

Climate transition with frequent heat waves and long drought periods threatens grapevine productivity and wine quality in the Mediterranean regions. Microorganisms are known to contribute to plant fitness and to stimulate plant resilience against biotic and abiotic factors.
In this work, it was assessed the impact of long-term drought on soil microbiome associated to grapevine in open field in Alentejo, renowned Portuguese wine region.
Soil and plant tissues of drought tolerant Syrah cultivar exposed to three irrigation levels (100%- FI, 50%-DI ETc; rain-fed–NI) for 5 years were sampled for two years (2022-2023). Metabarcoding analysis of soil bacteria (16S V4 rRNA) and fungi (ITS sub-region) were integrated with soil physiochemical properties and leaves´ physiological data. Pre-dawn leaf water potential and stomatal conductance confirmed the imposed drought scenarios. Even though, α- and β-diversity of prokaryotic and eukaryotic microbial communities differed more by season than water availability, samples clustered according to soil water content and pH (p<0.05). Fungal communities show higher differences in the structure across treatments than bacteria. In 2023, 16 bacterial against 61 fungal ASVs were significatively different in abundance between NI and FI. Beijerinckiaceae, Bradyrhizobiaceae (Alphaproteobacteria) and Nocardioidaceae, Streptomycetaceae (Actinobacteria) families resulted to be significatively more abundant in NI, while Ascomycota, Basidyomicota and Mortierellomycota are the most important fungal phyla in NI. With culturomics data, this study aims to gather insights into how soil microbiome is remodelled under drought and contribute to select bacterial and fungal taxa with potential to mitigate drought stress in vineyards.

Comparison between the volatile chemical profile of two different blends for the enhancement of  “Valpolicella Superiore”

Valpolicella is a famous wine producing region in the province of Verona owing its fame above all to the production of two Protected Designation of Origins (PDOs) withered wines: Amarone and Recioto. In recent years, however, the wineries have been interested in the enhancement and qualitative increase of another PDO, Valpolicella Superiore. All the Valpolicella PDOs wines are produced with a unique grape blend, mainly Corvina, Corvinone, Rondinella and a range of other minor varieties.

Outside and inside grapevine roots: arbuscular mycorrhizal fungal communities in a ‘nebbiolo’ vineyard 

In field conditions, grapevine roots are colonized by arbuscular mycorrhizal fungi (AMF). Little is known about the species composition of AMF communities associated to grapevine.

Relationships between vineyard soil physiochemical properties and under-vine soil cover as potential drivers of terroir in the Barossa

Aims: Soils are an intrinsic feature of the landscape and have influenced culturally and economically important terroir delineation in many wine-producing regions of the world. Soil physiochemical properties govern a wide array of ecosystem services, and can therefore affect grapevine health and fruit development. These physiochemical properties can reflect a combination of factors,