Terroir 2010 banner
IVES 9 IVES Conference Series 9 A zoning study of the viticultural territory of a cooperative winery in Valpolicella

A zoning study of the viticultural territory of a cooperative winery in Valpolicella

Abstract

The Valpolicella hilly area, north of Verona, is highly vocated for viticulture but its vineyards are sometimes characterized by very different soil and microclimate conditions which can greatly affect their oenological potential. A zoning study promoted by the Cooperative Winery Valpolicella (Negrar, Verona, Italy) was carried out with the aim of evaluating the oenological potential of the vineyards of the Winery associated growers. The final objective is to improve in general the quality of the wines and in particular to increase the production of premium wines (Amarone and Recioto).
On the basis of the results obtained from 12 reference vineyards spread on a wine territory of about 500 ha, it was possible to distinguish zones with different performances with regard to yield and technological quality of the grapes, which in turn was reflected in the quality of the corresponding wines.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

G.B. Tornielli, E. Rovetta, E. Sartor, M. Boselli

Dipartimento di Scienze, Tecnologie e Mercati della Vite e del Vino, Università degli Studi di Verona. Via della Pieve 70, 37129 San Floriano (VR) – Italia

Contact the author

Keywords

zoning, grapevine, valpolicella, Corvina, soil

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Towards a better understanding of cultivar susceptibility to esca disease: results from a pluriannual common garden monitoring

Grapevine (Vitis vinifera L.) exhibits a high level of genetic and phenotypic diversity among the approximately 6000 cultivars recorded. This perennial crop is highly vulnerable to numerous fungal diseases, including esca, which is a complex vascular pathology that poses a significant threat to the wine sector, as there is currently no cost-efficient curative method[1]. In this context, an effective approach to mitigate the impact of such diseases is by leveraging the crop’s genetic diversity. Indeed, susceptibility to esca disease appears to vary between cultivars, under artificial or natural infection. However, the mechanisms and varietal characteristics underlying cultivar susceptibility to esca are still unknown.

Impact of defoliation on leaf and berry compounds of Vitis vinifera L. Cv. Riesling investigated using non-destructive methods)

Climate change has a strong impact on the earlier onset of important phenological stages and plant development in viticulture.

Distinguishing of red wines from Northwest China by colour-flavour related physico-chemical indexes

Aim: Northwest China occupies an important position in China’s wine regions due to its superior geographical conditions with dry climate and sufficient sunlight. In this work, we aimed to investigate the physico-chemical colour and flavour characteristics of red wine in Northwest China.

Combined abiotic-biotic plant stresses on the roots of grapevine

In the 19th century, devastating outbreaks of phylloxera (Daktulosphaira vitifoliae Fitch), almost brought European viticulture to its knees. Phylloxera does not only take energy in form of sugars from the vine, but also affects the up- and down- regulations of genes, acts as a carbon sink and reprograms the physiology of the grapevines, including nutrient uptake and the defense system [1]. A key trait of rootstocks is the ability to perform well under high lime conditions as about 30 % of the land surface has calcareous soil. Iron deficiency not only causes the well-known problems of lime-induced chlorosis and stunted growth, but also affects the entire plant metabolism.

An intra-block study of bunch zone air temperature and its impact on berry and wine attributes

Temperature is a key environmental factor affecting grape primary and secondary metabolites. Even if several mesoscale studies have already been conducted on temperature
especially within a Protected Designation of Origin area, few data are available at an intra-block scale. The present study aimed at i) assessing the variability in bunch zone air temperature within a single vineyard block and the temporal stability of temperature spatial patterns, ii) understanding temperature drivers and
iii) identifying the impact of temperature on grape berry attributes.