Terroir 2010 banner
IVES 9 IVES Conference Series 9 A zoning study of the viticultural territory of a cooperative winery in Valpolicella

A zoning study of the viticultural territory of a cooperative winery in Valpolicella

Abstract

The Valpolicella hilly area, north of Verona, is highly vocated for viticulture but its vineyards are sometimes characterized by very different soil and microclimate conditions which can greatly affect their oenological potential. A zoning study promoted by the Cooperative Winery Valpolicella (Negrar, Verona, Italy) was carried out with the aim of evaluating the oenological potential of the vineyards of the Winery associated growers. The final objective is to improve in general the quality of the wines and in particular to increase the production of premium wines (Amarone and Recioto).
On the basis of the results obtained from 12 reference vineyards spread on a wine territory of about 500 ha, it was possible to distinguish zones with different performances with regard to yield and technological quality of the grapes, which in turn was reflected in the quality of the corresponding wines.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

G.B. Tornielli, E. Rovetta, E. Sartor, M. Boselli

Dipartimento di Scienze, Tecnologie e Mercati della Vite e del Vino, Università degli Studi di Verona. Via della Pieve 70, 37129 San Floriano (VR) – Italia

Contact the author

Keywords

zoning, grapevine, valpolicella, Corvina, soil

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Terroir aspects of harvest timing in a cool climate wine region: physiology, berry skin phenolic composition and wine quality

Preliminary experiment of harvest timing was carried out in Eger wine district, Hungary in 2009. In situ physiological responses, berry quality parameters and wine quality of the Kékfrankos grapevine were studied at two growing sites (Eger-K6lyuktet6 – non-stressed, flat vineyard, and Eger-Nagyeged hill – water stressed, steep slope vineyard).

Chemical and sensory evolution of total and partial dealcoholized wine in a can

In recent years, wine consumption has been evolving towards new trends. On the one hand, awareness of health and responsible consumption has been growing, and with it, the demand for wines with lower or without alcohol content [1].

Cytochrome P450 CYP71BE5 from grapevine (Vitis vinifera) catalyzes the formation of the spicy aroma compound, (-)-rotundone

(-)-Rotundone, an oxygenated sesquiterpene, is a potent odorant molecule with a characteristic spicy aroma existing in various plants including grapes1. It is considered as a significant compound notably in wines and grapes because of its low sensory threshold (16 ng L-1 in red wine, 8 ng L-1 in water) and aroma properties. (-)-Rotundone was first identified in red wine made from the grape cultivar Syrah (regionally called Shiraz) in Australia1, and then it was found in several grape varieties such as Duras, Grüner Veltliner, Schioppettino and Vespolina from Europe2, 3. Several environmental factors affecting the accumulation of (-)-Rotundone during the grape maturation, were reported such as ambient temperature4, soil properties and topography5, soil moisture from irrigation and light exposure in the bunch zone by leaf removal2.

Investigating biotic and abiotic stress responses in grafted grapevine cultivars: A comparative study of Cabernet-Sauvignon and Cabernet Volos on M4 rootstock

When grapevine plants are transplanted into already established vineyards, they face multiple challenges, including adverse climate, heavy metal accumulation from agronomic practices [1], and pressure from highly adapted pathogens [2].

Sustainable fertilisation of the vineyard in Galicia (Spain)

Excessive fertilization of the vineyard leads to low quality grapes, increased costs and a negative impact on the environment. In order to establish an integrated management system aimed at a sustainable fertilization of the vineyards, nutritional reference levels were established. For this purpose, 30 representative vineyards of the Albariño variety were studied, in which soil and petiole analyses were carried out for two years and grape yield and quality at harvest were measured. In both years of study, soil pH, calcium, sodium and cation exchange capacity were positively correlated with calcium content and negatively correlated with manganese in grapes. Irrigated vineyards had higher levels of aluminium in soil and lower levels of calcium in petiole. Climatic conditions were very different in the years of the study. The year 2019 was colder than usual, in 2020 there was a marked water stress with high summer temperatures. This resulted in medium-high acidity in grapes in 2019 and low acidity in 2020, with sugar levels being similar both years. A very marked decrease in must amino nitrogen was observed in 2020, with ammonia nitrogen remaining stable. The correlation of acidity and sugar values in grapes with soil and petiole analysis data made it possible to establish reference levels for the nutritional diagnosis of the Albariño variety in this region. Based on these results, an easy-to-use TIC application is currently being created for grapegrowers, aimed at improving the sustainability of the vineyard through reasoned fertilization. This study has now been extended to other Galician vine varieties.