Terroir 2010 banner
IVES 9 IVES Conference Series 9 Typicality related to terroir: from conceptual to perceptual representation: study of the links with enological practices

Typicality related to terroir: from conceptual to perceptual representation: study of the links with enological practices

Abstract

The conceptual image of a wine related to the terroir has consequences in technical terms. Among factors affecting the typicality, producers put forward the environmental factors of the terroir system, then the variety and finally the viticultural and oenological factors. We postulate that for the production of red wine, the “phenolic maturity” must be considered as an essential criterion. The “phenolic maturity” was translated into the date of grape harvest and the duration of vatting. Because of the nature of the corresponding biochemical compounds, these choices could have important consequences on the sensory profile of wines. The objective of this study is to understand the relationship between the conceptual image of a wine and the perceptual dimension of the wine, by connecting the typicality with some technical acts. The distinctive French wine style “Anjou Village Brissac” was investigated through four methods. A survey was performed to measure the conceptual dimension, and three sensorial methods were used for the perceptual dimension (Quantitative descriptive analysis (QDA) by a sensory expert panel, Just About Right analysis (JAR) by wine experts, and assessment of the typicality by wine experts). Wine experts were producers, winemakers, and oenologists from the area. The survey allowed highlighting soil as the first factor that affects the typicality. On the other hand, the QDA and JAR profiles highlighted the prevalence of the technical factors, in particular oenological, over the environmental factors. The JAR profile allowed to classify attributes in the typicality scores. Moreover, the study made it possible to show the shift between the conceptual typicality and the perceptual typicality, from the point of view of the technical acts, but also from the sensory point of view.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Cadot Yves (1), Caillé Soline (2), Thiollet-Scholtus Marie (1), Samson Alain (3), Barbeau Gérard (1), Cheynier Véronique (2)

(1) INRA, UE 1117, UMT Vinitera, F-49070 Beaucouzé, France
(2) INRA, UMR1083 Sciences pour l’OEnologie, F-34060 Montpellier, France
(3) INRA, UE999 Pech-Rouge, F-11430 Gruissan, France

Contact the author

Keywords

 Terroir, Cabernet, Typicality, Sensory analysis, Practices, Soil

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

ACCUMULATION OF GRAPE METABOLITES IS DIFFERENTLY IMPACTED BY WATER DEFICIT AT THE BERRY AND PLANT LEVELS IN NEW FUNGUS DISEASE-TOLERANT GENOTYPES

The use of new fungus disease-tolerant varieties is a promising long-term solution to better manage chemical input in viticulture, but unfortunately little is known regarding these new hybrids fruit development and metabolites accumulation in front of abiotic stresses such as water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD.

Modeling island and coastal vineyards potential in the context of climate change

Climate change impacts regional and local climates, which in turn affects the world’s wine regions. In the short term, these modifications rises issues about maintaining quality and style of wine, and in a longer term about the suitability of grape varieties and the sustainability of traditional wine regions. Thus, adaptation to climate change represents a major challenge for viticulture. In this context, island and coastal vineyards could become coveted areas due to their specific climatic conditions. In regions subject to warming, the proximity of the sea can moderate extremes temperatures, which could be an advantage for wine. However, coastal and island areas are particular prized spaces and subject to multiple pressures that make the establishment or extension of viticulture complex.
In this perspective, it seems relevant to assess the potentialities of coastal and island areas for viticulture. This contribution will present a spatial optimization model that tends to characterize most suitable agroclimatic patterns in historical or emerging vineyards according to different scenarios. Thanks to an in-depth bibliography a global inventory of coastal and insular vineyards on a worldwide scale has been realized. Relevant criteria have been identified to describe the specificities of these vineyards. They are used as input data in the optimization process, which will optimize some objectives and spatial aspects. According to a predefined scenario, the objectives are set in three main categories associated with climatic characteristics, vineyards characteristics and management strategies. At the end of this optimization process, a series of maps presents the different spatial configurations that maximize the scenario objectives.

Zeowine: the synergy of zeolite and compost. Effects on vine physiology and grape quality

The trial aims to improve the protection and management of the soil, the well-being of the plant and the quality of production in the wine supply chain organic and biodynamic, using an innovative product “ZEOWINE” resulting from the composting of waste of the wine and zeolite supply chain.

EVALUATION OF A SEAWEED EXTRACT OF RUGULOPTERYX OKAMURAE AGAINST ERYSIPHE NECATOR IN GRAPEVINE

Powdery mildew, caused by Erysiphe necator, is a widespread disease that causes high economical losses in viticulture. The main strategy to control the disease is the recurrent application of sulphur based phytochemical compounds. However, in order to reduce their accumulation in the environment and promote the sustainability of the sector, the European Commission has applied restrictions to the number of pesticide treatments and the maximum quantity of fungicides to be applied in viticulture. Seaweeds, in particular macroalgae, are marine resources rich in sulphated polysaccharides with bio-protective potential for the plant, representing an environmentally-friendly alternative approach for sustainable wine production.

Monitoring the establishment of a synthetic microbial community with a potential biocontrol activity against grapevine downy mildew using a microfluidic qPCR chip

Grapevine downy mildew, caused by the oomycete Plasmopara viticola, is responsible for significant economic losses each year and for a large proportion of the fungicides used in viticulture.