Terroir 2010 banner
IVES 9 IVES Conference Series 9 Typicality related to terroir: from conceptual to perceptual representation: study of the links with enological practices

Typicality related to terroir: from conceptual to perceptual representation: study of the links with enological practices

Abstract

The conceptual image of a wine related to the terroir has consequences in technical terms. Among factors affecting the typicality, producers put forward the environmental factors of the terroir system, then the variety and finally the viticultural and oenological factors. We postulate that for the production of red wine, the “phenolic maturity” must be considered as an essential criterion. The “phenolic maturity” was translated into the date of grape harvest and the duration of vatting. Because of the nature of the corresponding biochemical compounds, these choices could have important consequences on the sensory profile of wines. The objective of this study is to understand the relationship between the conceptual image of a wine and the perceptual dimension of the wine, by connecting the typicality with some technical acts. The distinctive French wine style “Anjou Village Brissac” was investigated through four methods. A survey was performed to measure the conceptual dimension, and three sensorial methods were used for the perceptual dimension (Quantitative descriptive analysis (QDA) by a sensory expert panel, Just About Right analysis (JAR) by wine experts, and assessment of the typicality by wine experts). Wine experts were producers, winemakers, and oenologists from the area. The survey allowed highlighting soil as the first factor that affects the typicality. On the other hand, the QDA and JAR profiles highlighted the prevalence of the technical factors, in particular oenological, over the environmental factors. The JAR profile allowed to classify attributes in the typicality scores. Moreover, the study made it possible to show the shift between the conceptual typicality and the perceptual typicality, from the point of view of the technical acts, but also from the sensory point of view.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Cadot Yves (1), Caillé Soline (2), Thiollet-Scholtus Marie (1), Samson Alain (3), Barbeau Gérard (1), Cheynier Véronique (2)

(1) INRA, UE 1117, UMT Vinitera, F-49070 Beaucouzé, France
(2) INRA, UMR1083 Sciences pour l’OEnologie, F-34060 Montpellier, France
(3) INRA, UE999 Pech-Rouge, F-11430 Gruissan, France

Contact the author

Keywords

 Terroir, Cabernet, Typicality, Sensory analysis, Practices, Soil

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Managing precision irrigation in vineyards: hydraulic and molecular signaling in eight grapevine varieties

Understanding the physiological and molecular bases of grapevine responses to mild to moderate water deficits is fundamental to optimize vineyard irrigation management and identify the most suitable varieties. In Mediterranean regions, the higher frequency of heat waves and droughts highlights the importance of precision irrigation to meet vine water demands and demonstrates the necessity for a deeper understanding of the different physiological responses among varieties under water stress. In this context, previous reports show an interplay between stomatal regulation of transpiration and changes in leaf hydraulic conductivity, also with the involvement of aquaporins (AQPs), particularly under water stress. However, how those signaling mechanisms are regulated in different grapevine varieties along phenological phases is unclear.

Investigating water stress-related seasonal and spatial patterns and the possible links with juice and wine compositional parameters

The mapping of spatial variability in vineyards offers the potential to implement zonal management strategies with the aim to optimize economic benefits and increase sustainability by managing natural resources, such as water used for irrigation, more optimally. This study characterized the (natural) variability in plant water status in a commercial Cabernet Sauvignon block, using remote sensing techniques, and identified the impact of this variability on the yield, and juice and wine composition. From the field data collected over two growing seasons, we demonstrated that remote sensing techniques are a practical and powerful tool for mapping spatial variability within vineyard blocks.

Juice carbon isotope discrimination is related to vine growth and fruit quality of Barossa Shiraz

Aim: Interactions between soil, climate and management that modulate vine growth, yield and grape composition are strongly defined by vine water availability and nutrient uptake during the season. Carbon isotope discrimination (δ13C) has been used as an integrative measurement of vine water availability during the season, with the potential to identify spatial variations of terroir in

Exploring the inner secrets of grapevine: a journey through plant-microbe interactions

Throughout centuries of anthropocentric breeding, plants have been selectively bred to enhance their quality traits and yield, often overlooking the importance of neglected attributes, like those involved in the interactions with beneficial microorganisms. This phenomenon led to an alteration in the distribution of photosynthetic products, shifting from defence mechanisms to growth, commonly described as ‘domestication syndrome’. Addressing the losses stemming from this condition is imperative just as unravelling the concealed communication between grapevines and beneficial microorganisms.

An efficient protocol for long-term maintenance of embryogenic calluses of Vitis vinifera

New breeding techniques (NBTS) could play a significant role in the genetic improvement of grapevine by producing new grape varieties with improved quantitative and qualitative characteristics. However, the application of these new techniques faces some technical challenges. One of the challenges is the generation of embryogenic calluses, which are not only difficult to obtain but it is also difficult to maintain their competence during in vitro cultivation, and thus regenerate plants without defects.