Terroir 2016 banner
IVES 9 IVES Conference Series 9 Spatial suitability analysis for site selection of vineyards using biophysical models and computational intelligence

Spatial suitability analysis for site selection of vineyards using biophysical models and computational intelligence

Abstract

Developing a sustainable agricultural production system and acquiring the full potential of land resources requires employing land-use assessment. This entails knowledge of the climate, soil, and topography of the area of interest. There is a great potential for Growth and development of grapes (Vitis vinefera L.) in the Pacific North West region of the United States. However, there are few studies that have focused on the development of a comprehensive spatial suitability system. The main objective of this study was to develop a spatial site selection system that can help select suitable areas for grapevine cultivation.

Several bio-climatic indices such as Growing Degree Days (GDD), Frost Free Days (FFD), Huglin Index (HI) were calculated for a period of 30 years using daily weather data obtained from the University of Idaho Gridded Surface Meteorological dataset. The soil data were obtained from the gSSURGO dataset and several properties such as soil depth, pH, available water holding capacity (AWC), and drainage class were extracted for the study area. The topographical data were obtained from the National Elevation dataset. The data were then reclassified using fuzzy logic and the soil, weather, and topographic suitability maps were developed. The final vineyard potential scores were obtained by combining the soil, weather, and topographic suitability. The potential scores had a range from 0 to 1, where 0 pertains to non-suitable areas and 1 refers to optimal sites. Consequently, the vineyard potential score for the vineyards that have been established in the state of Washington were obtained from the Crop Scape land cover maps and used as a measure of evaluation.

The spatial site selection system was able to classify the study area to 10 different regions based on their vineyard potential. The evaluation results indicated that 84% of the vineyards that are already established in the study area have a vineyard potential score ranging from 0.91 to 1. Another 15 % had a potential score ranging from 0.8 to 0.9. The results of this study can help decision makers, growers, and others with conducting a more precise land-use assessment for grapevine production.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Golnaz Badr

Department of Viticulture and Enology, Washington State University

Contact the author

Keywords

Terroir, wine, viticulture, spatial suitability, zoning

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Typology of wines in touch with environmental factors of terroirs and grapevine. Application to the Chinon vineyard

According to the vintage, it may be difficult for vine growers to make a decision regarding the type of wine in relation with the soils.

Characterization of Mesoclimatic zones competent for the culture of vine (vitis vinifera l.) in the province of San Juan, Argentina

Le zonage agroclimatique a pour objet de caractériser des lieux ayant des aptitudes distinctes pour la production de la vigne. La province de San Juan en Argentine est l’une des régions vitivinicoles les plus chaudes du pays.

Thermal conditions during the grape ripening period in viticulture geoclimate. Cool night index and thermal amplitude

Le régime thermique en période de maturation du raisin est l’une des variables déterminantes de la coloration du raisin et de la richesse en arômes, anthocyanes et polyphénols des vins.

Effect of power ultrasound treatment on free and glycosidically-bound volatile compounds and the sensorial profile of red wines

AIM Aiming to explore the possibility of shortening red winemaking maceration times (1,2), this study presents the effect of the application of high-power ultrasounds to crushed grapes, at winery-scale, on the content of varietal volatile compounds (free and glycosidically-bound) in musts and on the overall aroma of wines.

REVINE project : regenerative agricultural approaches to improve ecosystem services in Mediterranean vineyards

REVINE is a 3 year European projected funded by PRIMA programme which proposes the adoption of regenerative agriculture practices with an innovative and original perspective, in order to improve the resilience of vineyards to climate change in the Mediterranean area.
Regenerative agriculture ameliorates soil structure and microbial biodiversity that, in turn, leads to crop resilience against biotic and abiotic stressful factors. Moreover, enrichment of beneficial microbes in the rhizosphere, such as PGPR and PGPF, are known to trigger the plant immunity inducing the priming state.