Terroir 2010 banner
IVES 9 IVES Conference Series 9 Il Soave: esempio di cultura e di scienza

Il Soave: esempio di cultura e di scienza

Abstract

[English version below]

L’evoluzione del settore viti-enologico, supportato dalla ricerca ci propone sempre più frequentemente vini unici e inconfondibili. Il merito di ciò è da ricercare nel rapporto vitigno-territorio e dalla ormai scrupolosa ricerca di varietà più adatte per i diversi ambienti pedoclimatici. Lo studio in esame, iniziato nel 1995, è stato eseguito nell’area DOC Soave, denominazione di origine controllata tra le più significative del Veneto. La zonazione prima, la ricerca dei cru e del paesaggio poi, hanno avuto come scopo principale di salvaguardare, tutelare e proporre l’immagine del territorio ancorando ad esso i suoi vini. Ciò ha consentito di comunicare il panorama completo da cui nasce un vino, affinché vino e territorio siano valorizzati. Accanto all’esame degli aspetti storici, climatici, colturali e qualitativi, nello studio del Soave due sono gli elementi cui si è dato maggior rilievo, il suolo e la microstruttura dell’acino. In base ai caratteri climatici, podologici, orografici e storici, l’areale DOC e DOCG Soave è stato suddiviso in 14 sottozone. Nella prima fase di studio sono stati individuati 55 vigneti campione, mentre nello studio dei vari cru l’indagine è stata eseguita su 16 vigneti rappresentativi di altrettante realtà produttive storicamente ritenute i punti di riferimento della produzione Soave.

The progress of the wine-growing and enological sector, backed by research, more and more frequently gives us unique and unmistakable wines. The merit of this is in the relationship between the grape variety and the territory; and in the scrupulous research of more suitable varieties for environments with different pedoclimatic conditions. The study was begun in 1995 and was carried out in the “Soave” DOC area, one of the most significant controlled denomination of origin areas in the Veneto region. The aim of the zonation and the cru characterization are to safeguard and promote the image of the territory and to link the wines to the territory. It allows us to give a complete panorama of the territory which gives rise to these wins, their uniqueness, wholesomeness and naturalness, so that the wines and the territory increase in value. Alongside the study of history, climate, cultivation and quality, in the Soave study there are two aspects which are given prominence: the soil and the macrostructure of the berries. The Soave DOC and DOCG area was divided into 14 subzones on the basis of climate, pedological, orographical and historical features. In the 1st step were study 55 vineyard of Garganega, while in the cru studys were analyzed 14 vineyard that represent the historical standard of quality of the production o Soave.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Ponchia G. (2), Tomasi D. (1), Gaiotti F. (1), Lovat L. (1), Marcuzzo P. (1), Battista F. (1), Tosi E. (3), Lorenzoni A. (2)

(1) CRA-VIT Viale XXVIII Aprile 26, Conegliano, Italia
(2) Consorzio tutela vini di Soave, Via Mattielli 11, 37038 Soave (Verona), Italia
(3) Centro sperimentale per la vitivinicoltura della provincia di Verona, Italia

Contact the author

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

EFFECTIVENESS OF APPLIED MATERIALS IN REDUCING THE ABSORPTION OF SMOKE MARKER COMPOUNDS IN A SIMULATED WILDFIRE SCENARIO

Smoke taint (ST) is a grape-wine off-flavour that may occur when grapes absorb volatile phenols (VPs) originating from wildfire smoke (1). ST is associated with the negative sensory attributes such as smoky and ashy notes. VPs are glycosylated in the plant and thus present in both free and bound forms (2; 3). Wildfire smoke has resulted in a decline in grape and wine quality and financial losses which has become a prominent issue for the global wine industry.

Deconstructing the soil component of terroir: from controversy to consensus

Wine terroir describes the collectively recognized relation between a geographical area and the distinctive organoleptic characteristics of the wines produced in it. The overriding objective in terroir studies is therefore to provide scientific proof relating the properties of terroir components to wine quality and typicity. In scientific circles, the role of climate (macro-, meso- and micro-) on grape and wine characteristics is well documented and accepted as the most critical. Moreover, there has been increasing interest in recent years about new elements with possible importance in shaping wine terroir like berry/leaf/soil microbiology or even aromatic plants in proximity to the vineyard conferring flavors to the grapes. However, the actual effect of these factors is also dependent on complex interactions with plant material (variety/clone, rootstock, vine age) and with human factors.
The contribution of soil, although a fundamental component of terroir and extremely popular among wine enthusiasts, remains a much-debated issue among researchers. The role of geology is probably the one mostly associated by consumers with the notion of terroir with different parent rocks considered to give birth to different wine styles. However, the relationship between wine properties and the underlying parent material raises a lot of controversy especially regarding the actual existence of rock-derived flavors in the wine (e.g. minerality). As far as the actual soil properties are concerned, the effect of soil physical properties is generally regarded as the most significant (e.g sandy soils being associated with lighter wines while those on clay with colored and tannic ones) mostly through control of water availability which ultimately modifies berry ripening conditions either directly by triggering biosynthetic pathways, or indirectly by altering vigor and yield components. The role of soil chemistry seems to be weakly associated to wine sensory characteristic, although N, K, S and Ca, but also soil pH, are often considered important in the overall soil effect.
Recently, in the light of evidence provided by precision agriculture studies reporting a high variability of vineyard soils, the spatial scale should also be taken into consideration in the evaluation of the soil effects on wines. While it is accepted that soil effects become more significant than climate on a local level, it is not clear whether these micro-variations of vineyard soils are determining in the terroir effect. Moreover, as terroir is not a set of only natural factors, the magnitude of the contribution of human-related factors (irrigation, fertilization, soil management) to the soil effect still remains ambiguous. Lastly, a major shortcoming of the majority of works about soil effects on wine characteristics is the absence of connection with actual vine physiological processes since all soil effects on grape and wine chemistry and sensorial properties are ultimately mediated through vine responses.
This article attempts to breakdown the main soil attributes involved in the terroir effect to suggest an improved understanding about soil’s true contribution to wine sensory characteristics. It is proposed that soil parameters per se are not as significant determining factors in the terroir effect but rather their mutual interactions as well as with other natural and human factors included in the terroir concept. Consequently, similarly to bioclimatic indices, composite soil indices (i.e. soil depth, water holding capacity, fertility, temperature etc), incorporating multiple soil parameters, might provide a more accurate and quantifiable means to assess the relative weight of the soil component in the terroir effect.

Study of the aromatic oxidation markers of Tempranillo long aged wines

The aromatic quality of wines after a long aging period in bottle is one of key points for oenologists. The objective of this work is to determine the main representative aromatic compounds found in long aged wines from D.O.Ca. Rioja. This study was made by 32 wines from 1971 to 2010 vintages. Sotolon, acetaldehyde, phenylacetaldehyde, 1,1,6-trimethyl-1,2-dihydronaptalene (TDN), β-damascenone, Y-decalactone and Y-dodecalactone were determined as the most important oxidation markers by GC-MS analysis. Moreover, sensory analysis using triangular tests were performed from wines with and without the addition of the mentioned compounds. Four different concentrations of each odorant were added, as individual compounds and as mixtures. The additions were ranged from values close to the reference odour thresholds up to high level concentrations. The most identified aroma was sotolon, which is commonly associated to curry and coffee liqueur aromatic notes. Other oxidative compounds were easily detected by panellists, such as Y-decalactone (peach compote), Y-dodecalactone (ripe fruit). The mixtures of the odorants were most easily detected than the individual compounds. It should be noted that acetaldehyde and phenylacetaldehyde were rarely perceived and distinguished.

Determination of quality related polyphenols in chilean wines by absorbance-transmission and fluorescence excitation emission matrix (a-teem) analyses

Phenolic composition is essential to wine quality (Cleary et al., 2015; Bindon et al., 2020; Niimi et al., 2020) and its assessment is a strong industrial need to quality management.

Assessing bunch architecture for grapevine yield forecasting by image analysis 

It is fundamental for wineries to know the potential yield of their vineyards as soon as possible for future planning of winery logistics. As such, non-invasive image-based methods are being investigated for early yield prediction. Many of these techniques have limitations that make it difficult to implement for practical use commercially. The aim of this study was to assess whether yield can be estimated using images taken in-field with a smartphone at different phenological stages.