Terroir 2010 banner
IVES 9 IVES Conference Series 9 Il paesaggio delle alberate aversane ed il vino Asprinio

Il paesaggio delle alberate aversane ed il vino Asprinio

Abstract

[English version below]

Nel corso del 2009, in alcuni vigneti allevati ad alberata in provincia di Caserta (Italia), è stata avviata una ricerca per valutare la variabilità genetica della popolazione del vitigno ‘Asprinio’, la condizione sanitaria delle piante e le caratteristiche del vino sia rispetto alla forma di allevamento (alberata tradizionale e controspalliera) che all’altezza della fascia produttiva. I primi risultati indicano la totale omogeneità genetica della popolazione del vitigno ‘Asprinio’, non essendo stati ritrovati campioni vegetali riferibili a biotipi diversi. I saggi immunoenzimatici ELISA hanno rilevato la presenza di GLRaV 1, GLRaV 3 e GVA in tutti i campioni, mentre l’analisi delle molecole aromatiche delle uve e dei vini, condotta mediante analisi SPME-GC/MS, ha messo in evidenza che le uve ‘Asprinio’, prodotte sulla fascia più bassa delle alberate, presentano una maggiore potenzialità aromatica, rispetto a quelle della fascia più alta o delle controspalliere. I vini prodotti con diversi protocolli mostrano parametri enologici (grado alcolico, livelli di pH a acidità totale) simili tra di loro ed a quelli riportati da autori della metà del XX secolo.

During 2009, in some vineyards grown on trees (alberata) in the province of Caserta (Italy), a study is carried out to assess the genetic variability of the ‘Asprinio’ grapevine population, the health condition of the plants and the features of the wine in relation to the breeding system (traditional alberata vs horizontal training system) and to the heigth of fertile shoots. The first results point out the genetic identity of the ‘Aprinio’ grapevine population, because no different bio-types were found. The immunoenzymatic essays ELISA revealed that all the accessions were infected by GLRaV 1, GLRaV 3 and GVA; whereas the determination of the aromatic molecules from grapes and wines, performed by SPME- GC/MS analysis, indicated that the ‘Asprinio’ grapes, grown on lower area of the alberata, show greater aromatic potential than those from highest level of the same or those from vertical training system. The wines, produced by different procedures, show oenologycal parameters (alcohol degree, pH and total acidity level) similar to each other and to those reported by some authors of the mid-twentieth century.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

E. Spada (1), L. Paparelli (1), F. Scala (2), A. Monaco (2), P. Ferranti (3), A. Nasi (3), T. M. Granato (4)

1) Azienda Vitivinicola Tenuta Adolfo Spada – Galluccio (Caserta)
2) Dipartimento di Arboricoltura, Botanica e Patologia veg. – Facoltà di Agraria, Via Università 100 -80055 Portici
3) Dipartimento di Scienza degli Alimenti – Facoltà di Agraria, Via Università 100 – 80055 Portici Napoli
4)Dipartimento di Scienza molecolare agroalimentare – Facoltà di Agraria, Via Celoria 2 – 20133 Milano

Contact the author

Keywords

Asprinio, alberata, DNA, profilo aromatico
Asprinio, alberata, DNA, aromatic profile

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

How do KOCs influence wine consumers’ decisions? Based on NLP analysis and questionnaire surveys on Xiaohongshu

In China’s social media-driven marketing landscape, user-generated content (UGC) plays a pivotal role in brand communication and consumer decision-making.

Further insight on the use of yeast derivative products as alcoholic fermentation enhancers

Issues that can arise during the alcoholic fermentation are frequently attributed to imbalances or deficiencies in the nutrient composition of the fermentation medium.

Local ancient grapevine cultivars to face future viticulture

Among the different strategies to cope with the negative impacts of climate change on viticulture, the exploitation of genetic diversity is one of the most promising to adapt to new conditions and maintain wine production and quality. One of the biggest concerns in the context of climate change is to improve water use efficiency (WUE). In this way, the use of genotypes that present a better response to drought and high WUE is a key issue. In this work, physiological performance analysis was conducted to compare the water deficit stress (WDS) responses of local and widespread grapevines cultivars. Leaf gas exchange, water use efficiency (WUE) at different levels (leaf and long-term WUE (∆13C)), leaf osmotic adjustment and other water relations parameters were determined in plants under well-watered and WDS conditions alongside assessment of the levels of foliar hormones concentrations. Results denote that local cultivars displayed better physiological performance under WDS as compared to the widely-distributed ones. he results corroborate the hypothesis that better stomatal control allows increasing leaf WUE under drought as occurred in the local Callet cv.; but the minority local cultivar Escursac cv. showed high WUE under both treatments. In this case, high WUE can be related to maintaining higher photosynthetic activity under drought. The different mechanisms underlying the better performance under WDS and high WUE of minority local cultivars are discussed.

Influence Of Phytosterols And Ergosterol On Wine Alcoholic Fermentation For Saccharomyces Cerevisiae Strains

Sterols are a fraction of the eukaryotic lipidome that is essential for the maintenance of the cell membrane integrity and their good functionality. During alcoholic fermentation, they ensure yeast growth, metabolism and viability, as well as resistance to osmotic stress and ethanol inhibition. Two sterol sources can support yeasts to adapt to fermentation stress conditions: ergosterol, produced by yeast in aerobic conditions, and phytosterols, plant sterols found in grape musts imported by yeasts in anaerobiosis. Little is known about the physiological impact of the assimilation of phytosterols in comparison to ergosterol and the influence of sterol type on fermentation kinetics parameters.

Haplotype-Resolved genome assembly of the Microvine

Developing a tractable genetic engineering and gene editing system is an essential tool for grapevine. We initiated a plant transformation and biotechnology program at Oregon State University using the grape microvine system (V. vinifera) in 2018 to interrogate gene-to-trait relationships using traditional genetic engineering and gene editing. The microvine model is also used for nanomaterial-assisted RNP, DNA, and RNA delivery. Most reference genomes and annotations for grapevine are collapsed assemblies of homologous chromosomes and do not represent the specific microvine cultivar ‘043023V004’ under study at our institution.