Terroir 2010 banner
IVES 9 IVES Conference Series 9 Mathematical models of the dynamics of fermentation of wine yeasts under the influence of vitamins

Mathematical models of the dynamics of fermentation of wine yeasts under the influence of vitamins

Abstract

Biomass accumulation in yeast has been studied in this work in terms of their role in fermentation processes. So, biotin is involved in many reactions and nitrogen metabolism disorders, in protein biosynthesis and fatty acid synthesis. It is known that yeast cell is not capable to synthesize biotin, but it presence in the environment is unconditionally linked to production cost. Requirement for biotin yeast partially reduced in the presence of amino dicarboxylic environment. Effectiveness is increased under conditions of intense aeration, ascertaining the best results when additives order thousandths per liter of fermentation under anaerobic conditions (Banu, 2008, 2009).
Inositol (vitamin B9) is a derivative of cyclohexane polyol, which participate in lipid synthesis and especially phosphoglycerides.
Comparative studies have demonstrated their good role in fermentation processes and in particular to obtain yeast biomass with higher quality biotech.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Tita Ovidiu, Tusa Ciprian, Oprean Letitia, Radulescu Axenia, Tita Mihaela, Gaspar Eniko, Lengyel Ecaterina

Faculty of Agricultural Sciences, Food Industry and Environmental Protection, Ioan Ratiu street no.7-9, Sibiu, Romania

Contact the author

Keywords

Yeast, inositol, Saccharomyces bayanus, biomass, fermentation, bioreactor

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

The international Internet site of the geoviticulture MCC system

The “Geoviticulture Multicriteria Climatic Classification (MCC) System” was developed to characterize the climate of the wine producing regions of the world.

Colloidal stabilization of young red wine by Acacia Senegal gum: the major implication of protein-rich arabinogalactan-proteins

Acacia senegal gum (Asen) is an edible dried gummy exudate [1] added in young red wines to ensure their colloidal stability, precluding the precipitation of the coloring matter. Asen macromolecules, belonging to the arabinogalactan-protein (AGP) family [2], are hyperbranched, charged and amphiphilic heteropolysaccharides composed especially of sugars (92-96 %) and a small fraction of proteins (1-3 %). Asen is defined as a continuum of macromolecules that could be separated into three fractions by hydrophobic interaction chromatography (HIC) [3-4]. HIC-F1 (85-94 % of Asen), HIC-F2 (6-18 % of Asen) and HIC-F3 (1-3 % of Asen) are named and classified in that order according to their protein content, and then a growing hydrophobicity. The efficiency of Asen towards the coloring matter instability is evaluated according to an “efficacy test” that consists to determine the Asen quantity required to prevent the flocculation by calcium of a colloidal iron hexacyanoferrate solution (International Oenological Codex).

Epigenetics: an innovative lever for grapevine breeding in times of climate changes

Climate change results in erratic weather conditions, which may lead for many crops including grapevine, to a reduced production and products of lower quality. Concerning grapevine, climate change results in shorter growing seasons and dates for budbreak, flowering and fruit maturity occur earlier in many regions. It also leads to an increase of various pests and diseases, as well as the vectors responsible for disease distribution.

Brown Marmorated Stink Bug taint in grape must and wine: time evolution of trans-2-decenal

The brown marmorated stink bug (BMSB, Halyomorpha halys Stal) is an invasive pentatomid native to eastern Asia that is spreading rapidly worldwide, notably through human-mediated activities. Globally, it was reported in the USA, Canada, Italy, Hungary, and other European countries. BMSB has a broad host range that includes over 170 plants, many of agricultural importance, including various fruit, vegetables, row crops, and ornamentals. When present in the vineyard, the pest can affect yield and quality by directly feeding on berries resulting in fruit collapse and necrosis. Additional damage occurs when BMSB are carried into the winery within the grape clusters. The presence of BMSB during wine processing can affect juice and wine quality through the release of volatile compounds produced as a stress response. The major secretes compounds are tridecane and trans-2-decenal. Tridecane is an odorless compound and its effect on wine quality is currently unknown. Trans-2-decenal is an unsaturated aldehyde considered to be the main component of BMSB taint with strong green, coriander, and musty-like aromas. Its threshold value in wine was estimated at about 5 µg/L.

The influence of external factors on the alcoholic fermentation of wine yeasts

Wine yeast strains Saccharomyces ellipsoideus have important applications in food industry and in this regard is sought isolation as pure cultures and selecting those strains