Terroir 2010 banner
IVES 9 IVES Conference Series 9 Mathematical models of the dynamics of fermentation of wine yeasts under the influence of vitamins

Mathematical models of the dynamics of fermentation of wine yeasts under the influence of vitamins

Abstract

Biomass accumulation in yeast has been studied in this work in terms of their role in fermentation processes. So, biotin is involved in many reactions and nitrogen metabolism disorders, in protein biosynthesis and fatty acid synthesis. It is known that yeast cell is not capable to synthesize biotin, but it presence in the environment is unconditionally linked to production cost. Requirement for biotin yeast partially reduced in the presence of amino dicarboxylic environment. Effectiveness is increased under conditions of intense aeration, ascertaining the best results when additives order thousandths per liter of fermentation under anaerobic conditions (Banu, 2008, 2009).
Inositol (vitamin B9) is a derivative of cyclohexane polyol, which participate in lipid synthesis and especially phosphoglycerides.
Comparative studies have demonstrated their good role in fermentation processes and in particular to obtain yeast biomass with higher quality biotech.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Tita Ovidiu, Tusa Ciprian, Oprean Letitia, Radulescu Axenia, Tita Mihaela, Gaspar Eniko, Lengyel Ecaterina

Faculty of Agricultural Sciences, Food Industry and Environmental Protection, Ioan Ratiu street no.7-9, Sibiu, Romania

Contact the author

Keywords

Yeast, inositol, Saccharomyces bayanus, biomass, fermentation, bioreactor

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Mathematical modeling of fermentation kinetics: a tool to better understand interactions between Torulaspora delbrueckii and Saccharomyces cerevisiae in mixed cultures

Nowadays the use of Torulaspora delbrueckii is more and more common in winemaking. However, its behavior in presence of Saccharomyces cerevisiae is not always predictable.

Characterization of intact glycoside aroma precursors of recovered minority Spanish red grape varieties by High-Resolution Mass Spectrometry

In Spain, the wide diversity of red grapevine varieties represents an advantage when choosing the most suitable one for cultivation based on different climatic conditions, without implying a loss of their enological potential.

EFFECT OF OXIDATION ON LOW MOLECULAR WEIGHT PHENOLIC FRACTION, SALIVARY PROTEINS PRECIPITATION AND ASTRINGENCY SUBQUALITIES OF RED WINES

Changes in the low molecular weight phenolic fraction, obtained by liquid-liquid microextraction technique, were studied after controlled oxidation of two typologies of Sangiovese wines (Brunello di Montalcino and Chianti Classico) belonging to two vintages (2017 and 2018). The fractions were characterized by LC-MS and quantified by HPLC. The most abundant extracted compounds were the phenolic acids. The effect of oxidation, vintage, and wine typology was stated by a three-ways ANOVA. Gallic and syringic acids significantly increased after oxidation while (–)-epicatechin decreased the most.

USE OF COLD LIQUID STABULATION AS AN OENOLOGICAL TECHNIQUE IN WHITE WINEMAKING: EFFECTS ON PHENOLIC, AROMATIC AND SENSORIAL COMPOSITION

The application of different winemaking techniques helps to modify the basic parameters, phenolic profile, and aroma components influencing the final wine quality. In particular, pre-fermentative processes aim to increase the extraction and preservation of grape native compounds. Among them, cold liquid stabulation (macération sur bourbes) consists in maintaining the grape juice on its lees, in suspended condition at low temperature (0-8 °C) for a variable time (generally from 7 to 21 days). The aim of this work is to apply the cold liquid stabulation on two Italian white grape varieties, Arneis and Cortese, to evaluate the impact on basic parameters, color, polyphenolic compounds (TPI), antioxidant power (DPPH), total polysaccharides, and free and glycosylated volatile compounds (GC-MS analysis) during and after the process.

Tuning the pH during the fermentation has a strong effect on the wine protein composition and the stability of the resulting white wines

Previous results have shown the impact of the pH on the stability of white wine proteins. In a context of global warming that implies increases in ethanol content and pH