Terroir 2010 banner
IVES 9 IVES Conference Series 9 Mathematical models of the dynamics of fermentation of wine yeasts under the influence of vitamins

Mathematical models of the dynamics of fermentation of wine yeasts under the influence of vitamins

Abstract

Biomass accumulation in yeast has been studied in this work in terms of their role in fermentation processes. So, biotin is involved in many reactions and nitrogen metabolism disorders, in protein biosynthesis and fatty acid synthesis. It is known that yeast cell is not capable to synthesize biotin, but it presence in the environment is unconditionally linked to production cost. Requirement for biotin yeast partially reduced in the presence of amino dicarboxylic environment. Effectiveness is increased under conditions of intense aeration, ascertaining the best results when additives order thousandths per liter of fermentation under anaerobic conditions (Banu, 2008, 2009).
Inositol (vitamin B9) is a derivative of cyclohexane polyol, which participate in lipid synthesis and especially phosphoglycerides.
Comparative studies have demonstrated their good role in fermentation processes and in particular to obtain yeast biomass with higher quality biotech.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Tita Ovidiu, Tusa Ciprian, Oprean Letitia, Radulescu Axenia, Tita Mihaela, Gaspar Eniko, Lengyel Ecaterina

Faculty of Agricultural Sciences, Food Industry and Environmental Protection, Ioan Ratiu street no.7-9, Sibiu, Romania

Contact the author

Keywords

Yeast, inositol, Saccharomyces bayanus, biomass, fermentation, bioreactor

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Direct NMR evidence for the dissociation of sulfur-dioxide-bound acetaldehyde under acidic conditions: Impact on wines oxidative stability

SO2 reaction with electrophilic species present in wine, including in particular carbonyl compounds, is responsible for the reduction of its protective effect during wine aging. In the present study, direct 1H NMR profiling was used to monitor the reactivity of SO2 with acetaldehyde under wine-like oxidation conditions.

Investigating three proximal remote sensing techniques for vineyard yield monitoring

Yield monitoring can provide the winegrowers with information for precise production inputs during the season, thereby, ensuring the best possible harvest. Yield estimation is currently achieved through an intensive process that is destructive and time-consuming. However, remote sensing provides a group of proximal technologies and techniques for a non-destructive and less time-consuming method for yield monitoring.The objective of this study was to analyse three different approaches, for measuring grapevine yield close to harvest.

Antimicrobial activity of oenological polyphenols against Gram positive and Gram negative intestinal multidrug-resistant bacteria

Bacterial antibiotic resistance is a major current health problem. Polyphenols have demonstrated antibacterial activity, and in this work we studied the effect of oenological polyphenols on the growth of intestinal multidrug-resistant strains of human and animal origin. Two Enterococcus faecium strains, resistant to vancomycin and other antibiotics, and four Escherichia coli strains, resistant to ampicillin and other antibiotics, were included in this study. All strains showed multidrug resistant phenotypes and genotypes to at least two antibiotic families.

Typologie des paysages de vigne: un outil de planification

La culture de la vigne dessine un paysage rural original. En effet, de par ses qualités physiologiques, ses exigences agronomiques et les techniques qu’elle requiert, elle est à l’origine d’un portrait de nature sculpté, architecturé, parfois même comparé à l’art des jardins. A ce que l’on pourrait le cas échéant qualifier d’« art involontaire »

Novel approaches and promising perspectives for enhancing grapevine editing and regeneration

Grapevine (Vitis vinifera L.) is a challenging plant species to transform and regenerate due to its complex genome and biological characteristics. This limits the development of cisgenic and gene-edited varieties. One hurdle is selecting the best starting tissue for the transformation process, much like isolating suitable tissue for protoplasts. One promising method involves delivering CRISPR/Cas components to protoplasts isolated from embryogenic calli, which are then induced to regenerate. However, this process is inefficient, time-consuming, and only applicable to a few genotypes. To enhance grapevine regeneration efficiency, the expression of developmental and plant growth regulators shows promise in escaping the recalcitrance encountered in traditional tissue culture methods.