Terroir 2010 banner
IVES 9 IVES Conference Series 9 Mathematical models of the dynamics of fermentation of wine yeasts under the influence of vitamins

Mathematical models of the dynamics of fermentation of wine yeasts under the influence of vitamins

Abstract

Biomass accumulation in yeast has been studied in this work in terms of their role in fermentation processes. So, biotin is involved in many reactions and nitrogen metabolism disorders, in protein biosynthesis and fatty acid synthesis. It is known that yeast cell is not capable to synthesize biotin, but it presence in the environment is unconditionally linked to production cost. Requirement for biotin yeast partially reduced in the presence of amino dicarboxylic environment. Effectiveness is increased under conditions of intense aeration, ascertaining the best results when additives order thousandths per liter of fermentation under anaerobic conditions (Banu, 2008, 2009).
Inositol (vitamin B9) is a derivative of cyclohexane polyol, which participate in lipid synthesis and especially phosphoglycerides.
Comparative studies have demonstrated their good role in fermentation processes and in particular to obtain yeast biomass with higher quality biotech.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Tita Ovidiu, Tusa Ciprian, Oprean Letitia, Radulescu Axenia, Tita Mihaela, Gaspar Eniko, Lengyel Ecaterina

Faculty of Agricultural Sciences, Food Industry and Environmental Protection, Ioan Ratiu street no.7-9, Sibiu, Romania

Contact the author

Keywords

Yeast, inositol, Saccharomyces bayanus, biomass, fermentation, bioreactor

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Varieties and rootstocks: an important mean for adaptation to terroir

A large genetic diversity exists among V. vinifera varieties, but also among cultivated rootstocks. This diversity is important to adapt plant material to different environmental conditions

Enhancing viticulture sustainability with biochar: results of field experiments in Italy

The increasing vulnerability of viticulture to climate change necessitates innovative solutions to improve its sustainability and resilience.

Post-spring frost canopy development and fruit composition in cv. Barbera grapevines

One of the effects of warming trends is the advance of budburst, increasing the frequency of spring frost-related damage. In April 2021, a severe frost event affected central and northern italian viticulture. In a cv. Barbera vineyard located in the Colli Piacentini wine district, after such occurrence, vines were tracked and growth of primary bud shoots (PBS), secondary bud shoots (SBS), and suckers (SK) was monitored, as well as their fruitfulness and fruit composition. Vine performances were then compared to those of the previous year, when no post-budburst freezing temperatures occurred. The goal of the study was to evaluate the efficacy of SBS in restoring yield loss due to PBS injuries and analyze respective contribution to fruit composition.

Micro-meteorological, compositional and transcriptional study of corvina grape color during ripening

Grape anthocyanin content and composition could affect the quality and the production strategies of red wines. Differences in the pigment composition modify the color properties in terms of hue, extractability and stability. Thus, for the production of a highly qualitative wine such as “Amarone”, variations in the pigment composition are not negligible. The aim of this work was the investigation of the anthocyanin profile changes during ripening in Corvina grapes, the main cultivar for the “Amarone” production. The experiment took place in 2015, in two vineyards located in Valpollicella (Italy).

IN DEPTH CHARACTERIZATION OF OENOLOGICAL CHARACTERISTICS OF TWO LACHANCEA THERMOTOLERANS STARTER STRAINS

Non-Saccharomyces starter cultures became increasingly popular over the years because of their potential to produce more distinctive and unique wines. The major benefit of the use of Lachancea thermotolerans as a fermentation starter is its ability to produce relevant amounts of lactic acid and reduce alcoholic strength, making it valuable for mitigating negative impacts of climate change on grapes and wine quality. Besides, like any other non-Saccharomyces yeast, L. thermotolerans can significantly affect a whole range of other physico-chemical wine parameters.