Terroir 2010 banner
IVES 9 IVES Conference Series 9 Water relations, growth and yield of grapevines in Portugal’s Douro wine region

Water relations, growth and yield of grapevines in Portugal’s Douro wine region

Abstract

The hot and dry climate of the Demarcated Region of Douro (DRD), Portugal, particularly during the summer, induces soil water deficits that influence the growth and development of grapevines. Therefore, controlling the water supply to the soil, and concurrently the crop water status, through irrigation, it is an updated and sometimes controversial issue, which can bring significant changes in physiological processes within the plant and thus in vegetative growth, yield and quality. Water relations in grapevines have been extensively investigated over the past decades. However, more easily automated techniques have been recently used such as trunk diameter variations. On the other hand, the data reported in the literature relates to a wide range of climatic regions, varieties, phenological stages and soil moisture regimes, and consequently comparisons are frequently difficult to make. As a result the present study is undertaken to enhance understanding of the responses of cv. ‘Moscatel Galego’ grapevines to irrigation during a growing season (2009) in the DRD. The experimental design includes rain-fed plots and a trickle irrigated regime. The main objectives are to

(i) determine water availability by soil moisture readings along the vegetative cycle;

(ii) evaluate water stress indicators for irrigation scheduling, such as variations in trunk diameter, and

(iii) assess the responses of crop growth, yield and quality to different water regimes.

The work analyses several variables such as maximum daily trunk shrinkage, vegetative growth and development (e.g. leaf area, pruning weight), yield (fresh weight and number of clusters per vine) and quality (e.g. pH, total acidity, sugar content). As expected, irrigation improved vine water status and increased canopy expansion and leaf duration. Irrigation raised mean yields of fresh fruits, but had no effect on quality. The present work is part of a larger study, which includes namely the quantification of evapotranspiration and its components by eddy covariance and sap flow measurements.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

A. C. Malheiro (1, 2), I. Gonçalves (2), N. Conceição (3), A. A. Fernandes-Silva (1, 2), J. Silvestre (4), V. Sousa (2), M. I. Ferreira (3)

(1) Centre for Research and Technology of Agro-Environment and Biological Sciences (CITAB), 5000-801 Vila Real, Portugal
(2) Department of Agronomy, Universidade de Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
(3) Instituto Superior de Agronomia, Universidade Técnica de Lisboa, 1349-017 Lisboa, Portugal
(4) Estação Vitivinícola Nacional, Instituto Nacional de Investigação Agrária e das Pescas, 2565-191 Dois Portos, Portugal

Contact the author

Keywords

Grapevines, water relations, dendrometry, Douro, Portugal

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Exploring the genetic diversity of leaf flavonoids content in a set of Iberian grapevine cultivars: preliminary results

The use of grapevine genetic diversity is a way to mitigate the negative impacts of climate change on viticulture systems. Leaf epidermal flavonoids (including flavonols and anthocyanins) are involved in plant defense mechanisms against environmental stresses, like high temperatures or excessive solar radiation [1,2]. Among other factors, they modulate light absorption, which reduces photoinhibition processes in photosynthetic tissues [1]. Therefore, the identification of grapevine cultivars with an increased content on leaf epidermal flavonoids arises as a potential avenue to improve grapevine tolerance to some detrimental environmental stresses.

Effect of supplementation with inactive yeast during alcoholic fermentation in base wine for sparkling

INTRODUCTION: Foam stability of sparkling wines is significantly favored by the presence of surface active agents such as proteins and polysaccharides [1]. For that reason, the renowned sparkling wines are aged after the second fermentation in contact with the lees for several months (even years). Thereby wines are enriched in these macromolecules due to yeast autolysis. Since this practice is slow and costly, winemakers are seeking for alternative procedures to increase their concentration in base wines. In that sense, the supplementation with inactive yeast during alcoholic fermentation has been proposed [2]. The aim of this study was to determine whether this new strategy is really useful for enriching base wines in macromolecules and for improving foam properties of the base wines.

Haplotype-Resolved genome assembly of the Microvine

Developing a tractable genetic engineering and gene editing system is an essential tool for grapevine. We initiated a plant transformation and biotechnology program at Oregon State University using the grape microvine system (V. vinifera) in 2018 to interrogate gene-to-trait relationships using traditional genetic engineering and gene editing. The microvine model is also used for nanomaterial-assisted RNP, DNA, and RNA delivery. Most reference genomes and annotations for grapevine are collapsed assemblies of homologous chromosomes and do not represent the specific microvine cultivar ‘043023V004’ under study at our institution.

Under-vine and between the rows: investigating sustainable floor management in vineyards

Investigating vineyard floor management is essential as these practices directly impact soil health, vine growth, and grape quality.

Adaptive winemaking technologies using PIWI varieties in the wine industry of Ukraine

In recent years, the impact of climate change has been pushing agriculture toward the implementation of innovative production methods aimed at countering the negative consequences of climate change.