Terroir 2010 banner
IVES 9 IVES Conference Series 9 Assessment of environmental sustainability of wine growing activity in France

Assessment of environmental sustainability of wine growing activity in France

Abstract

To meet the demand of assessment tool of vine growers and their advisers we adapted to the vine production the INDIGO® method to developed initially for arable farming. This article aims to assess the feasibility and the robustness of the INDIGO® Indicators multi-criteria method of environmental assessment.
INDIGO® indicators of sustainability were built based on different aggregation methods of winegrowers practices and field characteristics. Indicators were tested in Alsace, Champagne, Burgundy, Jura vineyards for northern climate and four vintages (2000, 2001, 2002 and 2003) and Loire Valley vineyards for oceanic climate for 2008 vintage. Four viti-ecological indicators -I-pesticide, I-energy, I-nitrogen and I-organic-matter – were adapted from arable farming. And two viti-ecological indicators – I-soil-cover and I-frost– were created for vineyards. The six indicators were tested in Northern French vineyards and three of them -I-pesticide, I-energy and I-soil-cover- were adapted to oceanic conditions of vineyard production and calculated with 2008 data. INDIGO® viti-ecological indicators were successfully tested in several French vineyards illustrated the large variations between vineyards in rain intensity, fungi attack and winegrowers practices. The results leads us to that these INDIGO® viti-ecological indicators are robust and can be used in all vineyards.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

M. Thiollet-Scholtus , G. Barbeau (1), A. Tonus (1), C. Bockstaller (2)

(1) INRA, UE 1117, UMT Vinitera, F-49070 Beaucouzé, France
(2) INRA, UMR 1121 Nancy-Colmar Agronomie-Environnement, F-68021 Colmar, France

Contact the author

Keywords

Practices, vineyard, environment, assessment, decision aid tool

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Chemical characterization of distinctive aroma profiles of Valpolicella and Amarone wines

Valpolicella is an Italian wine producing region, famous for the production of high-quality red wines. A distinctive characteristic of this region is the extensive use of post-harvest withering.

Differences in the chemical composition and “fruity” aromas of Auxerrois sparkling wines from the use of cane and beet sugar during wine production.

The main objective of this study was to establish if beet sugar produces a different concentration of “fruity” volatile aroma compounds (VOCs), compared to cane sugar when used for second alcoholic fermentation of Auxerrois sparkling wines. Auxerrois base wine from the 2020 vintage was separated into two lots; half was fermented with cane sugar and half with beet sugar (both sucrose products and tested for sugar purity). These sugars were used in yeast acclimation (IOC 2007), and base wines for the second fermentation (12 bottles each). Base wines were manually bottled at the Cool Climate Oenology and Viticulture Institute (CCOVI) research winery. The standard chemical analysis took place at intervals of 0, 4 weeks, and 8 weeks post-bottling. Acidity and pH measurements were carried out by an auto-titrator. Residual Sugar (g/L) (glucose (g/L), fructose (g/L)), YAN (mg N/L), malic acid, and acetic acid (g/L) were analyzed by Megazyme assay kits. parameters were analyzed by Megazyme assay kits. Alcohol (% v/v) was assessed by GC-FID. VOC analysis of base wines, finished sparkling wines, as well as the two sugars in model sparkling wine solutions, was carried out by GC-MS. VOCs included ethyl octanoate, ethyl hexanoate, ethyl butanoate, ethyl decanoate, ethyl-2-methylbutyrate, ethyl-3-methylbutyrate, ethyl 2-methyl propanoate, ethyl 2- hydroxy propanoate, 1-hexanol, 2-phenylethan-1-ol, ethyl acetate, hexyl acetate, isoamyl acetate and 2-phenylethyl acetate.

The use of zirconia dioxide enclosed in a metallic cage for the stabilisation of Chardonnay white wine

White wines are commonly stabilised by removing the heat unstable proteins through adsorption by bentonite, an effective but inefficient wine processing step. Alternative absorbents are thus sought and zirconium dioxide (zirconia) is recognised as a promising candidate.

South Africa’s top 10 Sauvignon blanc wines. How do the chemical and sensory profiles compare?

FNB Top 10 Sauvignon Blanc competition, presented by the Sauvignon Blanc Interest Group of South Africa and sponsored by First National Bank, is the country’s foremost platform for producers of this cultivar to showcase and benchmark their wines. Wines entered in the competition originated from all over the winegrowing regions of the country and the winning wines showed good representation of quality South African Sauvignon blanc wines. The ten selected wines were subjected to various chemical analyses including volatile thiol and methoxypyrazine determination, while the sensory profile of each wine was determined using projective mapping.

Identification and biological properties of new resveratrol derivatives formed in red wine

Resveratrol is a well-known wine constituent with a wide range of activities. In wines, resveratrol can be oxidized to form various derivatives including oligomers [1]. In this study, resveratrol derivative transformation in hydroalcoholic solution was investigated by oxidative coupling using metals. De novo resveratrol derivatives were synthetized and analysed by NMR and MS experiments