Terroir 2010 banner
IVES 9 IVES Conference Series 9 Assessment of environmental sustainability of wine growing activity in France

Assessment of environmental sustainability of wine growing activity in France

Abstract

To meet the demand of assessment tool of vine growers and their advisers we adapted to the vine production the INDIGO® method to developed initially for arable farming. This article aims to assess the feasibility and the robustness of the INDIGO® Indicators multi-criteria method of environmental assessment.
INDIGO® indicators of sustainability were built based on different aggregation methods of winegrowers practices and field characteristics. Indicators were tested in Alsace, Champagne, Burgundy, Jura vineyards for northern climate and four vintages (2000, 2001, 2002 and 2003) and Loire Valley vineyards for oceanic climate for 2008 vintage. Four viti-ecological indicators -I-pesticide, I-energy, I-nitrogen and I-organic-matter – were adapted from arable farming. And two viti-ecological indicators – I-soil-cover and I-frost– were created for vineyards. The six indicators were tested in Northern French vineyards and three of them -I-pesticide, I-energy and I-soil-cover- were adapted to oceanic conditions of vineyard production and calculated with 2008 data. INDIGO® viti-ecological indicators were successfully tested in several French vineyards illustrated the large variations between vineyards in rain intensity, fungi attack and winegrowers practices. The results leads us to that these INDIGO® viti-ecological indicators are robust and can be used in all vineyards.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

M. Thiollet-Scholtus , G. Barbeau (1), A. Tonus (1), C. Bockstaller (2)

(1) INRA, UE 1117, UMT Vinitera, F-49070 Beaucouzé, France
(2) INRA, UMR 1121 Nancy-Colmar Agronomie-Environnement, F-68021 Colmar, France

Contact the author

Keywords

Practices, vineyard, environment, assessment, decision aid tool

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Validation of a high-throughput method for the quantification of volatile carbonyl compounds in wine and its use in accelerated ageing experiments

the aim of this study was the optimization and validation of a robust and comprehensive method for the determination of volatile carbonyl compounds (VCCs) in wines

Enhancement of the terroir

The terroir is today the most important factor of production and development in the wine sector. In a context where the commercial challenge is taking place all over the place, the distinction between traditional and “new” producing countries is not only a geographical, cultural and technical counter position but also, and above all, a legal one. Indeed, the system of standards present in the “old world” (plantation rights, production decrees, yields per hectare, etc.) which may represent, in the short term on the global market, constraints to development and product innovation must become an opportunity. But threats become opportunities, if we work, from the vine to the market, via communication, more on the elements of difference than on those of affinity.

A comparative analysis of regions worldwide with Pinot noir

This study examines the growing season climates of selected wine regions worldwide that have significant areas under Pinot noir.

Optimizing stomatal traits for future climates

Stomatal traits determine grapevine water use, carbon supply, and water stress, which directly impact yield and berry chemistry. Breeding for stomatal traits has the strong potential to improve grapevine performance under future, drier conditions, but the trait values that breeders should target are unknown. We used a functional-structural plant model developed for grapevine (HydroShoot) to determine how stomatal traits impact canopy gas exchange, water potential, and temperature under historical and future conditions in high-quality and hot-climate California wine regions (Napa and the Central Valley). Historical climate (1990-2010) was collected from weather stations and future climate (2079-99) was projected from 4 representative climate models for California, assuming medium- and high-emissions (RCP 4.5 and 8.5). Five trait parameterizations, representing mean and extreme values for the maximum stomatal conductance (gmax) and leaf water potential threshold for stomatal closure (Ψsc), were defined from meta-analyses. Compared to mean trait values, the water-spending extremes (highest gmax or most negative Ysc) had negligible benefits for carbon gain and canopy cooling, but exacerbated vine water use and stress, for both sites and climate scenarios. These traits increased cumulative transpiration by 8 – 17%, changed cumulative carbon gain by -4 – 3%, and reduced minimum water potentials by 10 – 18%. Conversely, the water-saving extremes (lowest gmax or least negative Ψsc) strongly reduced water use and stress, but potentially compromised the carbon supply for ripening. Under RCP 8.5 conditions, these traits reduced transpiration by 22 – 35% and carbon gain by 9 – 16% and increased minimum water potentials by 20 – 28%, compared to mean values. Overall, selecting for more water-saving stomatal traits could improve water-use efficiency and avoid the detrimental effects of highly negative canopy water potentials on yield and quality, but more work is needed to evaluate whether these benefits outweigh the consequences of minor declines in carbon gain for fruit production.

Grapevine cane pruning extract enhances plant physiological capacities and decreases phenolic accumulation in canes and leaves 

Vine cane extracts are a valuable byproduct due to their rich content of polyphenols, vitamins, and other beneficial compounds, which can affect and benefit the vine and the grapes. This study aims to evaluate the response of grapevine plants to irrigation with water supplemented with a vine cane extract, both at physiology response and phenolic composition in different parts of the plant (root, trunk, shoot, leaf, and berry).
Cane extract was obtained by macerating crushed pruning residues with warm water (5:1) and pectolytic enzymes. Two-year-old potted plants were irrigated with water (Control) while others were irrigated with cane extracts, either at 1:4 (w/v, cane extract/water; T 1:4) or at 1:8 (w/v, cane extract/water; T 1:8).