Terroir 2010 banner
IVES 9 IVES Conference Series 9 Assessment of environmental sustainability of wine growing activity in France

Assessment of environmental sustainability of wine growing activity in France

Abstract

To meet the demand of assessment tool of vine growers and their advisers we adapted to the vine production the INDIGO® method to developed initially for arable farming. This article aims to assess the feasibility and the robustness of the INDIGO® Indicators multi-criteria method of environmental assessment.
INDIGO® indicators of sustainability were built based on different aggregation methods of winegrowers practices and field characteristics. Indicators were tested in Alsace, Champagne, Burgundy, Jura vineyards for northern climate and four vintages (2000, 2001, 2002 and 2003) and Loire Valley vineyards for oceanic climate for 2008 vintage. Four viti-ecological indicators -I-pesticide, I-energy, I-nitrogen and I-organic-matter – were adapted from arable farming. And two viti-ecological indicators – I-soil-cover and I-frost– were created for vineyards. The six indicators were tested in Northern French vineyards and three of them -I-pesticide, I-energy and I-soil-cover- were adapted to oceanic conditions of vineyard production and calculated with 2008 data. INDIGO® viti-ecological indicators were successfully tested in several French vineyards illustrated the large variations between vineyards in rain intensity, fungi attack and winegrowers practices. The results leads us to that these INDIGO® viti-ecological indicators are robust and can be used in all vineyards.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

M. Thiollet-Scholtus , G. Barbeau (1), A. Tonus (1), C. Bockstaller (2)

(1) INRA, UE 1117, UMT Vinitera, F-49070 Beaucouzé, France
(2) INRA, UMR 1121 Nancy-Colmar Agronomie-Environnement, F-68021 Colmar, France

Contact the author

Keywords

Practices, vineyard, environment, assessment, decision aid tool

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Effects of grapevine mycorrhizal association on fine root dynamics depend on rootstock genotype

Context and Purpose of the study. Arbuscular mycorrhizal fungi (AMF) symbiosis with grapevines is a key component of vineyard ecosystems.

A deep learning object detection approach for smart pest identification in vineyards

Flavescence dorée (FD) poses a significant threat to grapevine health, with the American grapevine leafhopper, Scaphoideus titanus, serving as the primary vector.

Studying heat waves effects on berry composition: first outlooks and challenges

Extreme climatic events, such as prolonged drought followed by intense flooding, increasingly impact viticulture, affecting vine physiology, productivity, and grape composition.

GC-O and olfactoscan approaches to reveal premature aging markers in Chardonnay wine

Molecular markers of wine oxydation, such as sotolon or Strecker’s aldehydes that induce respectively nut or curry and boiled vegetables or wilted rose odors, can be percieved as a default by consumers. These volatile compounds are especially formed during the premature aging of wine, but it is likely that several contributing compounds are still unknown as is their combined contribution. This study was carried out to identify the markers of oxydation in Chardonnay wine by Gas Chromatography Olfactometry (GC-O) and to study the impact of these markers on the complex wine aromatic buffer using the Olfactoscan approach.A Chardonnay wine (2018-vintage), taken after malolactic fermentation without sulphites addition, was submitted to an artificial oxidation to simulate more or less prononced premature oxidation. Volatile compounds were extracted by Solid-Phase Extraction (SPE) and analysed by GC-O with a panel of 13 trained subjects. The same extract was also submitted to a second analysis based on the Olfactoscan technique, which allowed to evaluate the impact of each volatile compounds on the complex aromatic buffer of a non-oxidized wine delivered as background odor. Preliminary results revealed three types of behavior. On the one hand, several odor zones appeared only with the background odour, suggesting a synergy effect induced by the compounds in the aromatic buffer. Conversely, odor-active compounds could not be perceived within the background odor suggesting a masking effect. Finally several compounds were found to contribute as key odorants for wine oxydation once mixed with the aromatic buffer. These compounds are still to be identified using complementary techniques.

HOW OXYGEN CONSUMPTION INFLUENCES RED WINES VOLTAMMETRIC PROFILE

Phenolic compounds play a central role in sensory characteristics of wine, such as colour, mouthfeel, flavour and determine its shelf life. Furthermore, the major non-enzymatic wine oxidation process is due to the catalytic oxidation of phenols in quinones. Due their importance, during the years have been developed different analytical methods to monitor the concentration of phenols in wine, such as Folin-Ciocalteu method, spectrophotometric techniques and HPLC. These methods can also be used to follow some oxidation-related chemical transformations.