Terroir 2010 banner
IVES 9 IVES Conference Series 9 Assessment of environmental sustainability of wine growing activity in France

Assessment of environmental sustainability of wine growing activity in France

Abstract

To meet the demand of assessment tool of vine growers and their advisers we adapted to the vine production the INDIGO® method to developed initially for arable farming. This article aims to assess the feasibility and the robustness of the INDIGO® Indicators multi-criteria method of environmental assessment.
INDIGO® indicators of sustainability were built based on different aggregation methods of winegrowers practices and field characteristics. Indicators were tested in Alsace, Champagne, Burgundy, Jura vineyards for northern climate and four vintages (2000, 2001, 2002 and 2003) and Loire Valley vineyards for oceanic climate for 2008 vintage. Four viti-ecological indicators -I-pesticide, I-energy, I-nitrogen and I-organic-matter – were adapted from arable farming. And two viti-ecological indicators – I-soil-cover and I-frost– were created for vineyards. The six indicators were tested in Northern French vineyards and three of them -I-pesticide, I-energy and I-soil-cover- were adapted to oceanic conditions of vineyard production and calculated with 2008 data. INDIGO® viti-ecological indicators were successfully tested in several French vineyards illustrated the large variations between vineyards in rain intensity, fungi attack and winegrowers practices. The results leads us to that these INDIGO® viti-ecological indicators are robust and can be used in all vineyards.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

M. Thiollet-Scholtus , G. Barbeau (1), A. Tonus (1), C. Bockstaller (2)

(1) INRA, UE 1117, UMT Vinitera, F-49070 Beaucouzé, France
(2) INRA, UMR 1121 Nancy-Colmar Agronomie-Environnement, F-68021 Colmar, France

Contact the author

Keywords

Practices, vineyard, environment, assessment, decision aid tool

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

What is the best soil for Sangiovese quality wine?

Sangiovese is one of the main cultivar in the Italian ampelographic outline and it occupies more than 60% of total vineyard surface in the Tuscany region. It is also well known that the environmental

SENSORY PROFILES AND EUROPEAN CONSUMER PREFERENCE RELATED TOAROMA AND PHENOLIC COMPOSITION OF WINES MADE FROM FUNGUSRESISTANT GRAPE VARIETIES (PIWI)

Planting grape varieties with several resistance loci towards powdery and downy mildew reduces the use of fungicides significantly. These fungus resistant or PIWI varieties (acronym of German Pilzwiderstandsfähig) contribute significantly to the 50% pesticide reduction goal, set by the European Green Deal for 2030. However, wine growers hesitate to plant PIWIs as they lack experience in vinification and are uncertain, how consumer accept and buy wines from these yet mostly unknown varieties. Grapes from four white and three red PIWI varieties were vinified in three vintages to obtain four diffe-rent white and red wine styles, respectively plus one rosé.

Fermentation Products, Degradation Parameters, (Poly)Phenols And Potassium Content In Tokaji Aszú Winemaking

The historic Tokaj Wine Region in northeast Hungary, a UNESCO World Heritage region since 2002, encompasses 5,500 ha vineyards. Produced from “noble rot” grapes, Tokaji Aszú is known as one of the oldest botrytized wines all over the world. Special microclimatic conditions (due to Bodrog and Tisza rivers, Indian summer), soil conditions (clay, loess on volcanic bedrock) and grape

Influence of cork density upon cork stopper resiliency after opening a sparkling wine bottle

After Champagne popping, the first consumer’s observation is the shape of the cork stopper. Consumers expect a “mushroom shape”. Nevertheless, we sometimes observe a “barrel” shape due to inappropriate cork’s elastic properties. The aim of this study was to follow the loss of cork stopper resiliency during 26 months according to the density (d) of the cork in contact with the wine. 1680 disks were weighed + measured and divided in 6 density classes: High (H1 d= 0,19 g/cm3 – H2 d= 0,21 g/cm3), Medium (M, not studied) and Low (L1 d= 0,13 g/cm3 – L2 d= 0,14 g/cm3). Then, 138 technical cork stoppers were produced for each of the 4 studied groups. These corks consisted of an agglomerated natural cork granule body to which two natural cork disks were glued. A total of 552 bottles of sparkling wine were closed with these corks and open after 13, 19 and 26 months to follow cork resiliencies. Wine bottles were stored horizontally; thus, the external natural cork disks were in contact to the wine. During the 26 months of the study, highly significant differences (ANOVA) were observed between the resiliencies of H-corks and those of L-corks, whatever the time studied. The diameters of the L-corks were statistically higher than those of the H-corks. No significant differences were observed between L1 and L2 corks. At the opposite, differences were noted between H1 and H2 at 19 and 26 months. This could be explained by the heterogeneity of the resiliency that was higher for H-corks than for L-corks. Finally, the corks were visually (12 judges) divided in 3 classes corresponding to high (expected mushroom shape, i.e high resiliency), medium (irregular shape of the disk in contact with the wine and/or low premature deterioration of the expected resiliency) and low qualities (barrel shape = premature deterioration of the resiliency). The corks were also divided in 3 categories corresponding to 0-33%, 34-66% and 67-100% resiliency. A strong correlation was noted between the visual and the instrumental categorizations. This study strongly evidenced 1) the importance of the cork density on the cork stopper behaviour when opening the bottle and 2) the interest of an instrumental approach reflecting the consumer’s perception.

Transforming winemaking waste: grape pomace as a sustainable source of bioactive compounds

Grapevines (Vitis vinifera L.) are plants of great economic importance, with over 80% of grape production dedicated to wine production, yielding more than 258 million hectoliters annually [1].