Terroir 2010 banner
IVES 9 IVES Conference Series 9 The landscape of wine as an expression of cultural transversality

The landscape of wine as an expression of cultural transversality

Abstract

[English version below]

Il mondo del vino si è accorto che per la sua comprensione, valorizzazione e promozione è fondamentale conoscere le ragioni geologiche del vino, valutare il suo impatto sul paesaggio e acquisire il suo valore emozionale. Si aprono, pertanto, nuovi orientamenti culturali nella gestione enologico-enografica dei luoghi del vino: geologia e vino, geografia emozionale, il paesaggio d’arte nelle aree DOC/DOCG, il ruolo geologico nell’etichetta, ecc. sono i valori aggiunti al terroir nella conoscenza e comunicazione del vino. Il paesaggio del vino è un paesaggio emozionale che racconta la storia geologica dei luoghi alla base delle caratteristiche organolettiche dei vini ed espressione di quel paesaggio geologico del passato che oggi è invisibile, ma il cui ruolo è stato fondamentale per l’evoluzione di un determinato terroir.
Nel Grand Tour dell’800, inoltre, il Viaggio in Italia di Goethe è un percorso letterario ed artistico attraverso anche i paesaggi del vino che diventano il filo conduttore nella narrazione dei luoghi. Tutto questo rientra in quella trasversalità culturale che vede coinvolti scienziati, pittori, poeti, scrittori, ecc. in un ambito disciplinare, solo apparentemente di settore, ma assolutamente condivisibile e proprio per questo di grande impatto culturale.
Il terroir, quindi, va oltre le sue usuali definizioni tecniche, e coinvolge ambiti disciplinari diversi per una sua acquisizione e visione sempre più ampia e integrata.

The world of wine has come to realize that for its understanding, appreciation and promotion is it crucial to foster knowledge on the “geological reasons” of wine, to evaluate its impact on the landscape, and to acquire its emotional value. The roads of wine cannot be divorced from the geological and geo-morphological features of the terroirs within the DOC/DOCG areas, from the local cultural values and local traditions, from the emotions of the places, and from a variery of elements and parameters that can reach far from the vineyard the cellars.Thus, new cultural trends open up for the enologic and oenographic management of wine sites: the geology and wine, the emotional geography, the Fine Arts landscape of the DOC/DOCG areas, the geological information of the label, etc., are all added values to the terroir that pave the way to new scenarios for the knowledge and communication of wine. The landscape of wine is an expression of the past geological landscape, which is invisible today but played a fundamental role in the evolution of a given terroir. The wine landscape is an emotional landscape that tells the geological history underlying the characteristic organoleptic features of the wines; it is a specific and characteristic environmental scenario that is appreciated by the “geological reasons” of wine and by new compelling contents. In the 1800’s Grand Tour, for example, Goethe’s trip to Italy is a literary and artistic path that winds not only through the natural and monumental landscapes of the peninsula, but also through the landscapes of wine, associated to that historic moment of Italy as a thread in the narrative of places.All of the above fits a cultural transversality that spans scientists, painters, poets, writers, etc., in a disciplinary context that is only apparently sectorial, and that can be rather shared very successfully, achieving an extensive cultural impact. The terroir, thus, goes beyond its usual technical definition and involves various disciplinary areas contributing to its acquisition and to an increasingly broad and integrated vision.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type : Article

Authors

Lucilia Gregori

Department of Earth Sciences, University of Perugia
Piazza Università 1, 06123 Perugia, ITALY

Contact the author

Keywords

Geomorphology, landscape, terroir

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Low and zero alcohol “wines”: impact of different dealcoholization processes on phenol profile and health benefits

Consumers’ demand for non-alcoholic wine has notably increased in the last years: this trend is a consequence of a growing interest in more healthy habits, and as a response to higher alcohol levels in wine due to climate change. In addition, drinking limitations due to physiological/pathological conditions (e.g., pregnancy, diabetes, hepatic disorders), driving regulations, ethical/religious considerations, and high import taxes on alcoholic beverages have positively influenced this marked (us$ 1.6 billion in 2021). International organisation of vine and wine (OIV) established that alcohol content defining wines must not be less than 8.5% vol, (OIV, 2017).

Projected changes in vine phenology of two varieties with different thermal requirements cultivated in La Mancha DO (Spain) under climate change scenarios

The aim of this work was to analyze the phenology variability of Tempranillo and Chardonnay cultivars, related to the climatic characteristics in La Mancha Designation of Origin, and their potential changes under climate change scenarios. Phenological dates referred to budbreak, flowering, veraison and harvest were analyzed for the period 2000-2019. The weather conditions at daily time scale, recorded during the same period, were also evaluated. The thermal requirements to reach each of these phenological stages were calculated and expressed as the GDD accumulated from DOY=60. Changes in phenology were projected by 2050 and 2070 taking into account those values and the projected temperatures and precipitation, simulated under two Representative Concentration Pathway (RCP) scenarios –RCP4.5 and RCP8.5– using an ensemble of models. The average phenological dates during the period under study were, April 16th ± 6.6 days and April 5th ± 6.0 days for budbreak, May 31st ± 6.0 days and May 27th ± 5.3 days for flowering, July 26th ± 5.6 days and July 25th ± 5.8 days for veraison, and Ago 23rd ± 10.8 days and Ago 17th ± 9.0 days for harvest, respectively, for Tempranillo and Chardonnay. The projected changes in temperature imply an average change in the maximum growing season (April-August) temperatures of 1.2 and 1.9°C by 2050, and 1.6 and 2.6°C by 2070, under the RCP4.5 and RCP8.5 scenarios, respectively. A reduction in precipitation is predicted, which vary between 15% for 2050 under RCP4.5 scenario and up to 30% by 2070 under RCP8.5. The advance of the phenological dates for 2050, could be of 6, 7, 7, and 8 days for Tempranillo and 4, 6, 6 and 9 days for Chardonnay, respectively for budbreak, flowering, veraison and harvest under the RCP4.5 scenario. Under the RCP8.5 emission scenario, the advance could be up to 30% higher.

NEW INSIGHTS INTO THE FATE OF MARKERS INVOLVED IN FRESH MUSHROOM OFF-FLAVOURS DURING ALCOHOLIC FERMENTATION

The fresh mushroom off-flavour (FMOff) has been appearing in wines since the 2000s. Some C8 compounds such as 1-octen-3-one, 1-octen-3-ol, 1-hydroxyoctan-3-one, 3-octanol and others are involved in this specific off-flavour [1-3]. At the same time, glycosidic precursors of some FMOff compounds have been identified in musts contaminated by Crustomyces subabruptus [4], highlighting the role of aroma precursors in this specific taint. However, the fate of these volatile molecules and glycosidic fractions during fermentation is not well known.

Effects of organic mulches on the soil environment and yield of grapevine

Farming management practices aiming at conserving soil moisture have been developed in arid and semiarid-areas facing water scarcity problems. Organic mulching is an effective method to manipulate the crop-growing microclimate increasing crop yield by controlling soil temperature, and retaining soil moisture by reducing soil evaporation. In this sense, the effectiveness of different organic mulching materials (straw mulch and grapevine pruning debris) applied within the row of a vineyard was evaluated on the soil and on the vine in a Tempranillo vineyard located in La Rioja (Spain). Organic mulches were compared with a traditional bare soil management technique (based on the use of herbicides to avoid weed incidence). Mulching coverages favourably influenced the soil water retention throughout all the grapevine vegetative cycle. However, the soil-moisture variation was not the same under different mulching materials, being the straw mulch (SM) the one that retained more water in comparison with grapevine pruning debris (GPD) based-cover. The changes of soil moisture in the upper surface layer (0–10 cm) were highly dynamic, probably due to water vapour fluxes across the soil-atmospheric interface. However, both, SM and GPD reduced these fluctuations as compared with bare soils. A similar trend occurred with soil temperature. Both organic mulches altered soil temperature in comparison with bare soil by reducing soil temperature in summer and raising it in winter. Moreover, the same buffering effect for the temperature on the covered soil also remains in the deeper layers. To conclude, we could see that organic mulching had a positive impact on soil-moisture storage and soil temperature and the extent of this effect depends on the type of mulching materials. These changes led to higher rates of photosynthesis and stomatal conductivity compared to bare soils, also favouring crop growth and grape yields.

Petrolomics-derived data interpretation to study acetaldehyde-epicatechin condensation reactions

During red wine ageing or conservation, color and taste change and astringency tends to reduce. These changes result from reactions of flavan-3-ols and/or anthocyanins among which condensation reactions with acetaldehyde are particularly important. The full characterization of these reactions has not been fully achieved because of difficulties in extracting and separating the newly formed compounds directly from wine. Model solutions mimicking food products constitute a simplified medium for their exploration, allowing the detection of the newly formed compounds, their isolation, and their structure elucidation.