Terroir 2010 banner
IVES 9 IVES Conference Series 9 The landscape of wine as an expression of cultural transversality

The landscape of wine as an expression of cultural transversality

Abstract

[English version below]

Il mondo del vino si è accorto che per la sua comprensione, valorizzazione e promozione è fondamentale conoscere le ragioni geologiche del vino, valutare il suo impatto sul paesaggio e acquisire il suo valore emozionale. Si aprono, pertanto, nuovi orientamenti culturali nella gestione enologico-enografica dei luoghi del vino: geologia e vino, geografia emozionale, il paesaggio d’arte nelle aree DOC/DOCG, il ruolo geologico nell’etichetta, ecc. sono i valori aggiunti al terroir nella conoscenza e comunicazione del vino. Il paesaggio del vino è un paesaggio emozionale che racconta la storia geologica dei luoghi alla base delle caratteristiche organolettiche dei vini ed espressione di quel paesaggio geologico del passato che oggi è invisibile, ma il cui ruolo è stato fondamentale per l’evoluzione di un determinato terroir.
Nel Grand Tour dell’800, inoltre, il Viaggio in Italia di Goethe è un percorso letterario ed artistico attraverso anche i paesaggi del vino che diventano il filo conduttore nella narrazione dei luoghi. Tutto questo rientra in quella trasversalità culturale che vede coinvolti scienziati, pittori, poeti, scrittori, ecc. in un ambito disciplinare, solo apparentemente di settore, ma assolutamente condivisibile e proprio per questo di grande impatto culturale.
Il terroir, quindi, va oltre le sue usuali definizioni tecniche, e coinvolge ambiti disciplinari diversi per una sua acquisizione e visione sempre più ampia e integrata.

The world of wine has come to realize that for its understanding, appreciation and promotion is it crucial to foster knowledge on the “geological reasons” of wine, to evaluate its impact on the landscape, and to acquire its emotional value. The roads of wine cannot be divorced from the geological and geo-morphological features of the terroirs within the DOC/DOCG areas, from the local cultural values and local traditions, from the emotions of the places, and from a variery of elements and parameters that can reach far from the vineyard the cellars.Thus, new cultural trends open up for the enologic and oenographic management of wine sites: the geology and wine, the emotional geography, the Fine Arts landscape of the DOC/DOCG areas, the geological information of the label, etc., are all added values to the terroir that pave the way to new scenarios for the knowledge and communication of wine. The landscape of wine is an expression of the past geological landscape, which is invisible today but played a fundamental role in the evolution of a given terroir. The wine landscape is an emotional landscape that tells the geological history underlying the characteristic organoleptic features of the wines; it is a specific and characteristic environmental scenario that is appreciated by the “geological reasons” of wine and by new compelling contents. In the 1800’s Grand Tour, for example, Goethe’s trip to Italy is a literary and artistic path that winds not only through the natural and monumental landscapes of the peninsula, but also through the landscapes of wine, associated to that historic moment of Italy as a thread in the narrative of places.All of the above fits a cultural transversality that spans scientists, painters, poets, writers, etc., in a disciplinary context that is only apparently sectorial, and that can be rather shared very successfully, achieving an extensive cultural impact. The terroir, thus, goes beyond its usual technical definition and involves various disciplinary areas contributing to its acquisition and to an increasingly broad and integrated vision.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type : Article

Authors

Lucilia Gregori

Department of Earth Sciences, University of Perugia
Piazza Università 1, 06123 Perugia, ITALY

Contact the author

Keywords

Geomorphology, landscape, terroir

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

‘Cabernet Sauvignon’ (Vitis vinifera L.) berry skin flavonol and anthocyanin composition is affected by trellis systems and applied water amounts

Trellis systems are selected in wine grape vineyards to mainly maximize vineyard yield and maintain berry quality. This study was conducted in 2020 and 2021 to evaluate six commonly utilized trellis systems including a vertical shoot positioning (VSP), two relaxed VSPs (VSP60 and VSP80), a single high wire (SH), a high quadrilateral (HQ), and a guyot (GY), combined with three levels of irrigation regimes based on different crop evapotranspiration (ETc) replacements, including a 25% ETc, 50% ETc, and 100% ETc. The results indicated SH yielded the most fruits and accumulated the most total soluble solids (TSS) at harvest in 2020, however, it showed the lowest TSS in the second season. In 2020, SH and HQ showed higher concentrations in most of the anthocyanin derivatives compared to the VSPs. Similar comparisons were noticed in 2021 as well. SH and HQ also accumulated more flavonols in both years compared to other trellis systems. Overall, this study provides information on the efficacy of trellis systems on grapevine yield and berry flavonoid accumulation in a currently warming climate.

Metabolomic fingerprint changes during the alcoholic fermentation at industrial level of Muscat of Alexandria grape must

Muscat of Alexandria is one of the oldest cultivars still existing, globally recognized for its distinctive aroma, and the primary grape variety cultivated in the Greek Island of Lemnos, yielding various white wines with designated origins.

Sustainable fertilisation of the vineyard in Galicia (Spain)

Excessive fertilization of the vineyard leads to low quality grapes, increased costs and a negative impact on the environment. In order to establish an integrated management system aimed at a sustainable fertilization of the vineyards, nutritional reference levels were established. For this purpose, 30 representative vineyards of the Albariño variety were studied, in which soil and petiole analyses were carried out for two years and grape yield and quality at harvest were measured. In both years of study, soil pH, calcium, sodium and cation exchange capacity were positively correlated with calcium content and negatively correlated with manganese in grapes. Irrigated vineyards had higher levels of aluminium in soil and lower levels of calcium in petiole. Climatic conditions were very different in the years of the study. The year 2019 was colder than usual, in 2020 there was a marked water stress with high summer temperatures. This resulted in medium-high acidity in grapes in 2019 and low acidity in 2020, with sugar levels being similar both years. A very marked decrease in must amino nitrogen was observed in 2020, with ammonia nitrogen remaining stable. The correlation of acidity and sugar values in grapes with soil and petiole analysis data made it possible to establish reference levels for the nutritional diagnosis of the Albariño variety in this region. Based on these results, an easy-to-use TIC application is currently being created for grapegrowers, aimed at improving the sustainability of the vineyard through reasoned fertilization. This study has now been extended to other Galician vine varieties.

High-throughput screening of physical-mechanical berry skin traits facilitates targeted selection of breeding material with resistance to Botrytis bunch rot and grape sunburn

The ongoing climate change implies an increasing mean air temperature, which is signified by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased risk for fungal diseases like downy mildew (DM) and Botrytis bunch rot (BBR) as well as for grape sunburn. To meet that demand, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality.

The effects of alternative herbicide free cover cropping systems on soil health, vine performance, berry quality and vineyard biodiversity in a climate change scenario in Switzerland

There is an urgent need in viticulture to adopt alternative herbicide-free soil management strategies to mitigate climate change, increase biodiversity, reduce plant protection products and improve soil quality while minimizing detrimental effects on grapevine’s stress tolerance and fruit quality. To propose sustainable solutions, adapted to different pedoclimatic conditions in Switzerland, we developed a multidisciplinary 4-year project, started in 2020. Objectives of the project are to a) evaluate the impact of green covers (spontaneous flora, winter cover crop and permanent ground cover) on environmental and agronomic parameters and b) develop subsequently innovative strategies for different viticultural contexts of Switzerland. The project is divided into 3 phases: 1) diagnosis, 2) on-farm and 3) on-station experiments. Phase 1) consisted in an assessment of 30 commercial vineyards all over Switzerland, where growers already use different herbicide-free soil management strategies. The most promising practices identified in this exploratory phase will be replicated in commercial vineyards across Switzerland (“on-farm”) as well as in a classical randomized block design in an experimental plot (“on-station”). For phase 1), measurements consisted in evaluation of soil status (compaction, structure, roots development), soil microbial diversity (metagenomics), plant diversity and biomass, vine physiology (water stress, vigor, leaf nitrogen) and berry quality (acidity, sugar, available nitrogen). Interestingly, the permanent ground cover resulted in a higher Shannon index thus a higher biodiversity as compared to the other itineraries. The winter cover crop increased vine nitrogen and vigor while deteriorating soil quality, leaving the soil more exposed and compacted likely due to more frequent tillage. The spontaneous flora led to higher berry sugar accumulation, less nitrogen and higher malic acid concentration putatively due to a higher water retention of the flora in a particularly wet vintage. Phases 2) and 3) are required to confirm those tendencies, over the 3 next vintages and different climatic conditions.