Terroir 2008 banner
IVES 9 IVES Conference Series 9 Geochemistry of Vrbničko Polje (Croatia) winegrowing site

Geochemistry of Vrbničko Polje (Croatia) winegrowing site

Abstract

A multi-element pedo-geochemical survey was carried out in Vrbničko polje vineyards on the Krk Island, Croatia. This Mediterranean winegrowing site is famous by Žlahtina wine production. The objectives of this study are (i) to describe characteristics of the site related to climate, topography, geology, soil and geochemistry and (ii) to integrate data on soil quality using GIS which can be applied with management information systems Two soil profiles were excavated and examined, and dominant soil type was determined, as well as physical and chemical characteristics of soil. Topsoil (0-30 cm) and subsoil (30-60 cm) samples were collected from 26 locations inside the site. Total metal contents (Al, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, P, Pb, S, V, Zn) were determined using ICP-OES after aqua regia extraction. A geospatial database was compiled in GIS, and after applying statistics and geostatistisc, the maps of trace metals distribution have been produced. Accumulation of copper in soil, determined in this research, is the most common effect of continuing fertilization and protection against diseases and pests in vineyards. High nickel and chromium concentrations seem to be of the geogenic origin. Associations of heavy metals with the selected soil properties explain the preferential feature of metal retention in soil.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Marija ROMIC, Davor ROMIC, Monika ZOVKO, Helena BAKIC, Andjelo RAIC

University of Zagreb, Faculty of Agriculture, Department of Amelioration, Svetosimunska 25, HR-10000 Zagreb, Croatia

Contact the author

Keywords

anthropogenic vineyard soil, geochemical characterization, GIS, trace metals, parent material, spatial distribution

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Effect of mannoproteins extracted from Torulaspora delbrueckii on wine flavanol composition and on flavanol-salivary protein interactions

Global climate change is exerting an influence on vine phenology, leading to a decoupling of technological and phenolic maturity of grapes. This results in the modification of berry chemical composition, which can translate into wines with excessive astringency. The addition of mannoproteins (MP) to wine has been proposed as a way of mitigating this problem, since some studies have shown that MPs can modulate wine astringency. However, the mechanism underlying the astringency modulation effect of MPs is not well known and it seems to be dependent on the compositional and structural characteristics of the MP.

The origin and the discovery of “terroir”

Le mot “terroir” dérive du latin “terra”, mais déjà les Romains l’indiquaient comme “locus” ou”loci”, c’est-à-dire un lieu ayant le “genius”destiné à la production d’un produit d’excellente qualité.

Impact of monopolar and bipolar pulsed electric fields on the quality of Tinta Roriz wines

Pulsed electric fields (pef) technology holds significant promise for the agrifood industry, considering the capacity of inducing cell electroporation, due to the disruption of cellular membranes. Pef-induced permeabilization is dependent of the chosen treatment protocol (i.e. Pulse shape, electrical field strength, specific energy) and of the matrix’s characteristics (i.e. Cell radii and size, ph, electrical conductivity).

Three proximal sensors to estimate texture, skeleton and soil water storage in vineyards

Proximal sensors are becoming widely used in precision viticulture, due to the quick, easy and non-invasive identification of soil spatial variability. The apparent soil electrical conductivity (ECa) is the main parameter measured by sensors, which is correlated to many factors, like soil water content, salinity, clay content and mineralogy, rock fragments, bulk density, and porosity.

Characterizing graft union formation in different scion/rootstock combinations of grapevine 

In most viticultural regions, grapevines are cultivated grafted, employing either hybrid or pure species of various American Vitis spp., such as V. berlandieri, V. rupestris, and V. riparia, as grapevine rootstocks. These rootstocks play a crucial role in providing resistance to the Phylloxera insect pest. Beyond Phylloxera resistance, it is desirable for grapevine rootstocks to exhibit resistance to other soil-borne pathogens and adaptability to abiotic stress conditions. The introduction of new rootstocks holds promise for adapting agriculture to climate change without altering the characteristics of the final harvested product.