Terroir 2008 banner
IVES 9 IVES Conference Series 9 Geochemistry of Vrbničko Polje (Croatia) winegrowing site

Geochemistry of Vrbničko Polje (Croatia) winegrowing site

Abstract

A multi-element pedo-geochemical survey was carried out in Vrbničko polje vineyards on the Krk Island, Croatia. This Mediterranean winegrowing site is famous by Žlahtina wine production. The objectives of this study are (i) to describe characteristics of the site related to climate, topography, geology, soil and geochemistry and (ii) to integrate data on soil quality using GIS which can be applied with management information systems Two soil profiles were excavated and examined, and dominant soil type was determined, as well as physical and chemical characteristics of soil. Topsoil (0-30 cm) and subsoil (30-60 cm) samples were collected from 26 locations inside the site. Total metal contents (Al, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, P, Pb, S, V, Zn) were determined using ICP-OES after aqua regia extraction. A geospatial database was compiled in GIS, and after applying statistics and geostatistisc, the maps of trace metals distribution have been produced. Accumulation of copper in soil, determined in this research, is the most common effect of continuing fertilization and protection against diseases and pests in vineyards. High nickel and chromium concentrations seem to be of the geogenic origin. Associations of heavy metals with the selected soil properties explain the preferential feature of metal retention in soil.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Marija ROMIC, Davor ROMIC, Monika ZOVKO, Helena BAKIC, Andjelo RAIC

University of Zagreb, Faculty of Agriculture, Department of Amelioration, Svetosimunska 25, HR-10000 Zagreb, Croatia

Contact the author

Keywords

anthropogenic vineyard soil, geochemical characterization, GIS, trace metals, parent material, spatial distribution

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Sensory and chemical phenotyping of wines from a F1 grapevine population

The European Green Deal, a concept of the European Commission, aims at the reduction of pesticides in EU agriculture for 2030 by 50%. Viticulture uses the largest amounts of fungicides in the EU

AN AUTOMATIC CANOPY COOLING SYSTEM TO COPE WITH THE THERMAL-RADIATIVE STRESSES IN THE PIGNOLETTO WHITE GRAPE

In recent years characterized by hot dry summers, the implementation of innovative irrigation tools in the vineyard represents a crucial challenge to ensure optimal production and to avoid excess of water consumption. It is known that the grapevine reacts to multiple stresses – i.e., high temperatures and wa- ter shortage – through adaptive mechanisms that are detrimental to the yield. Furthermore, this condi- tion is usually aggravated by high solar radiation, which could negatively affect the phenolic composi- tion of the grapes. Therefore, a cooling system has been developed aiming to reduce bunches’ sunburn damage.

Enhancing vineyard resilience: evaluating sustainable practices in the Douro demarcated region

In mediterranean agriculture, sustainability and productivity are seriously threatened by climate change and water scarcity. This situation is exacerbated by poor management practices such as excessive use of agrochemicals, overgrazing, and monoculture. The Douro demarcated region (ddr) is an emblematic region, classified world heritage site by UNESCO in 2001. Viticulture is the main agricultural activity in DDR, widely known to produce port wine.

Influence of Partial Rootzone Drying on grape and wine anthocyanin composition

The effect of Partial Rootzone Drying (PRD) on fruit and wine composition has been investigated. At harvest, total anthocyanin and phenolic concentration of Shiraz and Cabernet Sauvignon fruit was either unaltered or increased by PRD relative to control irrigation over two seasons. Where there was an increase in anthocyanin concentration

Bio-protection by one strain of M. Pulcherrima: microbiological and chemical impacts in red wines

In oenology, bio-protection consists in adding bacteria, yeasts or a mixture of microorganisms on grape must before fermentation in order to reduce the use of chemical compounds such as sulphites.