Terroir 2008 banner
IVES 9 IVES Conference Series 9 Rare earth elements distribution in grape berries

Rare earth elements distribution in grape berries

Abstract

Rare Earth Elements (REEs) include 15 lanthanides, yttrium and scandium. Their occurrence in soil and plants seems to be closely tied to the geological composition of the underlying mother rock, to the physical and chemical properties of the soil and to the specific ability of the plant to take up and accumulate these microelements. To date knowledge regarding the composition and distribution of trace elements in Vitis vinifera has been lacking or is inadequate. The aim of this research was to study REEs distribution in Chardonnay berries harvested at ripeness in 2006 in Trentino (north-eastern Italy).
After washing and microwave acid digestion, both the total REEs content in the berries and the REEs distribution within the skin, seeds and flesh were quantified. Analysis of 13 elements (yttrium, Y; lanthanum, La; cerium, Ce; praseodymium, Pr; neodymium, Nd; samarium, Sm; europium, Eu; gadolinium, Gd; dysprosium, Dy; holmium, Ho; erbium Er; thulium, Tm; ytterbium, Yb) was carried out with an inductively coupled plasma mass spectrometer.
The total REEs content measured in berries was 2.079 μg/kg of fresh weight. The order in terms of percentage content within the berry was skin > flesh > seeds (p<0.05) for Y, La, Ce, Pr, Nd, Sm, Gd, Dy, Ho and Er. For Tm and Yb there were no significant differences between the skin and flesh. Eu showed a significantly different distribution pattern.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Daniela BERTOLDI (1,2), Roberto LARCHER (1), Giorgio NICOLINI (1), Massimo BERTAMINI (1), Giuseppe CONCHERI (2)

(1) IASMA Research Centre. Via E.Mach, 1. 38010 San Michele all’Adige (TN) Italy
(2) Agricultural Biotechnology Department, University of Padova. Viale dell’Università, 16. 35020. Legnaro (PD) Italy

Contact the author

Keywords

Rare Earth Elements, berry, seed, skin, ICP-MS

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Metabolomic discrimination of grapevine water status for Chardonnay and Pinot noir

Water status impact in viticulture has been widely explored, as it strongly affects grapevine physiology and grape chemical composition. It is considered as a key component of vitivinicultural terroir. Most of the studies concerning grapevine water status have focused on either physiological traits, or berry compounds, or traits involved in wine quality. Here, the response of grapevine to water availability during the ripening period is assessed through non-targeted metabolomics analysis of grape berries by ultra-high resolution mass spectrometry. The grapevine water status has been assessed during 2 consecutive years (2019 & 2020), through carbon isotope discrimination on juices from berries collected at maturity (21.5 brix approx.) for 2 Vitis vinifera cv. Pinot noir (PN) and Chardonnay (CH). A total of 220 grape juices were collected from 5 countries worldwide (Italy; Argentina; France; Germany; Portugal). Measured δ13C (‰) varied from -28.73 to -22.6 for PN, and from -28.79 to -21.67 for CH. These results also clearly revealed higher water stress for the 2020 vintage. The same grape juices have been analysed by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) and Liquid Chromatography coupled to Mass Spectrometry (LC-qTOF-MS), leading to the detection of up to 4500 CHONS containing elemental compositions, and thus likely tens of thousands of individual compounds, which include fatty acids, organic acids, peptides, phenolics, also with high levels of glycosylation. Multivariate statistical analysis revealed that up to 160 elemental compositions, covering the whole range of detected masses (100 –1000 m/z), were significantly correlated to the observed gradients of water status. Examples of chemical markers, which are representative of these complex fingerprints, include various derivatives of the known abscisic acid (ABA), such as phaesic acid or abscisic acid glucose ester, which are significantly correlated with higher water stress, regardless of the variety. Cultivar-specific behaviours could also be identified from these fingerprints. Our results provide an unprecedented representation of the metabolic diversity, which is involved in the water status regulation at the grape level, and which could contribute to a better knowledge of the grapevine mitigation strategy in a climate change context.

Fast, and full microbiological wine analysis using triple cellular staining.

We propose here a brand new large routine microbiological analysis method intended for oenology, in flow cytometry, using high performance equipment and triple selective cell staining, activated by fluorescence. The results and practical applications of the method are presented: Brettanomyces (Dekkera) Monitoring, fermentations monitoring, bottling and enological practices monitoring.The method allow a complete new microbiological tool for wine industry.The method has been accredited ISO 17025 in our laboratories.

Brown Marmorated Stink Bug taint in grape must and wine: time evolution of trans-2-decenal

The brown marmorated stink bug (BMSB, Halyomorpha halys Stal) is an invasive pentatomid native to eastern Asia that is spreading rapidly worldwide, notably through human-mediated activities. Globally, it was reported in the USA, Canada, Italy, Hungary, and other European countries. BMSB has a broad host range that includes over 170 plants, many of agricultural importance, including various fruit, vegetables, row crops, and ornamentals. When present in the vineyard, the pest can affect yield and quality by directly feeding on berries resulting in fruit collapse and necrosis. Additional damage occurs when BMSB are carried into the winery within the grape clusters. The presence of BMSB during wine processing can affect juice and wine quality through the release of volatile compounds produced as a stress response. The major secretes compounds are tridecane and trans-2-decenal. Tridecane is an odorless compound and its effect on wine quality is currently unknown. Trans-2-decenal is an unsaturated aldehyde considered to be the main component of BMSB taint with strong green, coriander, and musty-like aromas. Its threshold value in wine was estimated at about 5 µg/L.

Are all red wines equals regarding their vulnerability to brettanomyces bruxellensis ?

Odours deemed harmful by the consumer and described as “stable”, “horse sweat” or “burnt plastic” can be found in wines. The responsible molecules are volatile phenols, produced by a spoilage yeast: brettanomyces bruxellensis. This species is particularly well adapted to the wine environment and can resists many stresses such as a high alcohol level, a low ph or high levels of SO2, more or less efficiently depending on the strain considered.

Impact of pedoclimatical conditions on the precocity potential of vineyards in the canton of Geneva

Terroir studies are common nowadays but few have used precise pedoclimatic measures in order to evaluate the precocity potential. The objectives of this work were (i) to assess the effect of main terroir parameters (soil, climate and topography) influencing the phenological development of the vine, and (ii) to evaluate a geostatistic approach by using a high number of already existing plots (higher variability) to analyze the terroir parameters’ impact.