Terroir 2008 banner
IVES 9 IVES Conference Series 9 Relations between soil characteristics and must and wine composition in different terroirs of Emilia Romagna (Italy)

Relations between soil characteristics and must and wine composition in different terroirs of Emilia Romagna (Italy)

Abstract

The under-way zoning works of the Emilia viticulture have pointed out a huge variability of the features of the soils, which belong to this area. From the “Colli di Parma” to the “Colli d’Imola”, going along the hilly environment across the provinces of Parma, Reggio Emilia, Modena and Bologna, all over a vine area of 7.000 ha, you can find more than 30 soils, which have also been described. For a few of them, the most typical of each territory, that have the same topographic conditions as well as the same local climate and the same cultural practices, it has been possible to underline their influence on the vegetative and productive features of the local grapevine varieties, as well as on the quality of their wines. A positive and significant relation was established for the variety Sangiovese between the active limestone levels and the sensory characteristics of the wine.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

ZAMBONI M. (1), NIGRO G. (2), VESPIGNANI G. (2), SCOTTI C. (3), RAIMONDI S. (3), SIMONI M. (4), FREGONI M. (1)

(1) Università Cattolica S.C., Via Emilia Parmense, 84 – 29100 Piacenza
(2) C.R.P.V. Filiera Vitivinicola e Olivicola; Via Tebano, 54 – 48018 Faenza (RA)
(3) I.TER Soc. coop.; Via Brugnoli, 11 – 40122 Bologna
(4) ASTRA Innovazione e Sviluppo s.r.l. – 48018 Faenza (RA)

Contact the author

Keywords

milieu viticole, terroir, sol, qualité du mout, profil sensoriel du vin

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Impact of acidification by fumaric acid at vatting on Cabernet-Sauvignon wine during winemaking

Acidity of grape berries is lowered due to climate changes (1), resulting in musts and wines with higher pHs. These higher pHs induce microbiological instability

The capacity of spectrofluorometric fingerprints to discern changes of wine composition: applications in classifying wine additives and tracking red wine maturation and ageing

Fluorescence spectroscopy combined with chemometrics has shown advantages in wine analysis due to being rapid, sensitive, and selective to fluorescent molecules. Especially due to the abundant phenolic compounds [1], the molecular fingerprints afforded by fluorescence spectroscopy can potentially be used to discern and track the change of wine composition, with two innovative investigations having been implemented.

MAPPING OF GAS-PHASE CO₂ IN THE HEADSPACE OF CHAMPAGNE GLASSES BY USING AN INFRARED LASER SENSOR UNDER STATIC TASTING CONDITIONS

From the chemical angle, Champagne wines are complex hydro-alcoholic mixtures supersaturated with dissolved carbon dioxide (CO₂). During the pouring process and throughout the several minutes of tasting, the headspace of a champagne glass is progressively invaded by many chemical species, including gas-phase CO₂ in large majority. CO₂ bubbles nucleated in the glass and collapsing at the champagne surface act indeed as a continuous paternoster lift for aromas throughout champagne or sparkling wine tasting [1]. Nevertheless, inhaling a gas space with a concentration of gaseous CO₂ close to 30% and higher triggers a very unpleasant tingling sensation, the so-called “carbonic bite”, which might completely perturb the perception of the wine’s bouquet.

Climatic zoning of viticultural production periods over the year in the tropical zone: application of the methodology of the Géoviticulture MCC system

L’objectif de cette recherche est le zonage climatique des périodes viticoles de l’année dans la Vallée du São Francisco, région brésilienne productrice de vins située en climat tropical semi-aride. Dans cette région, la production peut être échelonnée sur tous les mois de l’année.

Vertical temperature gradient in the canopy provides opportunities to adapt training system in a climate change context

Aims: The aims of this study were (1) to measure the vertical temperature gradient in the vine canopy in parcels with different vineyard floor management practices and (2) to analyze the factors influencing this gradient. The objective was to investigate whether the increase of trunk height could be an adaptation strategy to reduce air temperature in the bunch zone in a context of climate change.