Terroir 2008 banner
IVES 9 IVES Conference Series 9 Relations between soil characteristics and must and wine composition in different terroirs of Emilia Romagna (Italy)

Relations between soil characteristics and must and wine composition in different terroirs of Emilia Romagna (Italy)

Abstract

The under-way zoning works of the Emilia viticulture have pointed out a huge variability of the features of the soils, which belong to this area. From the “Colli di Parma” to the “Colli d’Imola”, going along the hilly environment across the provinces of Parma, Reggio Emilia, Modena and Bologna, all over a vine area of 7.000 ha, you can find more than 30 soils, which have also been described. For a few of them, the most typical of each territory, that have the same topographic conditions as well as the same local climate and the same cultural practices, it has been possible to underline their influence on the vegetative and productive features of the local grapevine varieties, as well as on the quality of their wines. A positive and significant relation was established for the variety Sangiovese between the active limestone levels and the sensory characteristics of the wine.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

ZAMBONI M. (1), NIGRO G. (2), VESPIGNANI G. (2), SCOTTI C. (3), RAIMONDI S. (3), SIMONI M. (4), FREGONI M. (1)

(1) Università Cattolica S.C., Via Emilia Parmense, 84 – 29100 Piacenza
(2) C.R.P.V. Filiera Vitivinicola e Olivicola; Via Tebano, 54 – 48018 Faenza (RA)
(3) I.TER Soc. coop.; Via Brugnoli, 11 – 40122 Bologna
(4) ASTRA Innovazione e Sviluppo s.r.l. – 48018 Faenza (RA)

Contact the author

Keywords

milieu viticole, terroir, sol, qualité du mout, profil sensoriel du vin

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

The use of epifluorescence versus plating to monitor the effect of different parameters on microorganisms in wine

The monitoring of the number of micro-orgranisms in wine is crucial for the wine producer. Traditional counting methods include microscopic enumeration and plating on selective media, which measures the culturability of the cells. The use of epifluorescence microscopy is, however, a method, which can measure both culturability and

Scalable asymptomatic grapevine leafroll virus complex-3 detection through integrated airborne imaging spectroscopy, autonomous robotics, and cloud computing

The past three decades of terrestrial remote sensing research have delivered unprecedented insights into our fundamental ability to detect, quantify, and differentiate plant disease (Gold 2021). However, much of our fundamental knowledge in this domain has come from studies in non-agricultural systems and until recently, most agricultural studies, when extant, have focused on tree crops where canopy closure and large plot and plant size facilitate stress detection at low spatial resolution. Recent engineering innovations and advancements in constellation architecture design have refined the accuracy and scalability of airborne and spaceborne sensing platforms, enabling us to monitor diverse specialty crops, including grapevine, planted in smaller, spatially varied fields.

The role of phytoplasma effector interaction with phosphoglucomutase in the pathogenicity of ‘Candidatus Phytoplasma solani’ in grapevine 

Bois noir is the most widespread phytoplasma grapevine disease in Europe. It is associated with ‘Candidatus Phytoplasma solani’. In symptomatic grapevines cv. ‘Zweigelt’ infected with ‘Ca. P. solani’ compared with uninfected grapevines, metabolic pathways associated with phosphorylated sugar production were induced both at the transcriptional level and at the level of activity of the corresponding enzymes (Dermastia et al., 2021, Int. J. Mol. Sci. 22: 3531). In particular, the expression of gene coding for phosphoglucoisomerase was upregulated, resulting in increased phosphoglucoisomerase enzyme activity.

Do high temperature extremes impact berry tannin composition?

Flavonoids, including flavonols, anthocyanins, and tannins, are
important contributors to grape and wine quality, and their biosynthesis is strongly influenced by bunch microclimate. While the synergistic effect of light and temperature has been intensively examined on flavonoids in relation to bunch exposure, studies targeting the sole effect of high temperature have mostly
focused on anthocyanins during the ripening period. With tannin biosynthesis starting around flowering, heatwaves occurring earlier in the grape growing season could be critical. Only a few papers report the impact of temperature on tannin synthesis and accumulation; to date, none have examined the effect of high temperature extremes which, in the context of climate change, relates to increases in heatwave intensity.

Pruned vine biomass exclusion from a clay loam vineyard soil – examining the impact on physical/chemical properties

The wine industry worldwide faces increasing challenges to achieve sustainable levels of carbon emission mitigation. This project seeks to establish the feasibility of harvesting winter pruned vineyard biomass (PVB) for potential use in carbon footprint reduction, through its use as a renewable biofuel for energy production. In order to make this recommendation, technical issues such as the potential environmental impact, chemical composition and fuel suitability, and logistical challenges of harvesting biomass needs to be understood to compare with the results from similar studies. Of particular interest is the role PVB plays as a carbon source in vineyard soils and what effect annual removal might have on soil carbon sequestration. A preliminary trial was established in the Waite Campus vineyard (University of Adelaide) to test current management strategies. Vines are grown in a Eutrophic, Red Dermosol clay loam soil with well managed midrow swards. A comparison was undertaken of mid-row treatments in two 0.25 Ha blocks (Shiraz and Semillon), including annual cultivation for seed bed preparation, the deliberate exclusion of PVB (25 years) and incorporation of PVB (13 years) at an average of 3.4 and 5.5 Mg/Ha-1 for Shiraz and Semillon respectively. In both 0-10cm and 10-30cm soil core sample depths, combined soil carbon % measures in the desired range of 1.80 to 3.50, were not significantly different between treatments or cultivars and yielded an estimated 42 Mg/ha-1 of sequestered soil carbon. Other key physical and chemical measures were likewise not significantly different between treatments. Preliminary results suggest that in a temperate zone vineyard, managed such as the one used in this study, there is no long term negative impact on soil carbon sequestration through removing PVB. This implies that growers could confidently harvest PVB for use in several end fates including as a bio fuel.