Terroir 2008 banner
IVES 9 IVES Conference Series 9 Spatial variability of the nutrient distribution in Jerez vineyard soils (Spain)

Spatial variability of the nutrient distribution in Jerez vineyard soils (Spain)

Abstract

From a fertility standpoint, the vine has to extract from the soil mineral substances necessary for its existence. However, the amount of certain available nutrients does not always correspond to a proportional increase in quality. Such is the case with nitrogen and organic matter and is in contrast to that of P and K, whose presence has a positive relation to quality. Most of the vintage wines come from vineyards located on calcium-rich soils, which have a complex effect on their quality. It is therefore necessary to characterize the soil for fertilizer practices in an objective way. The production area of Jerez has a notable environmental variability due to the landscape morphology (hills and plains), soil characteristics and the climate conditions due to its oceanic proximity. To assess the fertility of the soils of different vineyards and detect potential imbalances that may impede the growth of the vine and affect its production, a study has been made of distribution parameters such as O.M., P, K, Ca and Fe available in three plots representing the area of Jerez (Cadiz, Spain).The results have shown that OM and Fe presented a greater homogeneity in their concentration for the entire sample area with variances ranging between 0.09 and 0.82, and between 36 and 90, respectively. For the other nutrients analyzed, the variation between different points within the controlled sample plots was very important, noting interval concentrations of 5900 to 12480 ppm for Ca, from 8 to 158 ppm for P and 342 to 1698 ppm for K. The differences observed in the surface horizon remained in the deeper layers.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

BAENA G. (1); ORDOÑEZ R. (1); SERRANO M.J. (2)

(1) IFAPA Centro Alameda del Obispo, Avda. Menéndez Pidal s.n. 14071, Córdoba. Área de Producción Ecológica y Recursos Naturales. Consejería de Innovación, Ciencia y Empresa de la Junta de Andalucía
(2) IFAPA Centro Rancho de la Merced, Ctra. Trebujena, Km 3.2, Jerez de la Frontera, Cádiz. Área Producción Agraria. Consejería de Innovación, Ciencia y Empresa de la Junta de Andalucía

Contact the author

Keywords

soil fertility, spatial variability, vineyard, potassium content, phosphorus content

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Drought affects vineyard soil microbiome: approach to select micro-organisms adapted to drought

Climate transition with frequent heat waves and long drought periods threatens grapevine productivity and wine quality in the Mediterranean regions. Microorganisms are known to contribute to plant fitness and to stimulate plant resilience against biotic and abiotic factors.
In this work, it was assessed the impact of long-term drought on soil microbiome associated to grapevine in open field in Alentejo, renowned Portuguese wine region.
Soil and plant tissues of drought tolerant Syrah cultivar exposed to three irrigation levels (100%- FI, 50%-DI ETc; rain-fed–NI) for 5 years were sampled for two years (2022-2023). Metabarcoding analysis of soil bacteria (16S V4 rRNA) and fungi (ITS sub-region) were integrated with soil physiochemical properties and leaves´ physiological data. Pre-dawn leaf water potential and stomatal conductance confirmed the imposed drought scenarios. Even though, α- and β-diversity of prokaryotic and eukaryotic microbial communities differed more by season than water availability, samples clustered according to soil water content and pH (p<0.05). Fungal communities show higher differences in the structure across treatments than bacteria. In 2023, 16 bacterial against 61 fungal ASVs were significatively different in abundance between NI and FI. Beijerinckiaceae, Bradyrhizobiaceae (Alphaproteobacteria) and Nocardioidaceae, Streptomycetaceae (Actinobacteria) families resulted to be significatively more abundant in NI, while Ascomycota, Basidyomicota and Mortierellomycota are the most important fungal phyla in NI. With culturomics data, this study aims to gather insights into how soil microbiome is remodelled under drought and contribute to select bacterial and fungal taxa with potential to mitigate drought stress in vineyards.

Overview on wine and health 32 years after the French paradox 

Phenolic compounds or polyphenols are the most abundant and ubiquitous secondary metabolites present in the plant kingdom with more than 8000 phenolic structures currently known. These compounds play an important role in plant growth and reproduction, providing protection against biotic and abiotic stress such as pathogen and insect attack, UV radiation and wounding. (poly)phenols are widely distributed in the human diet mainly in plant-derived food and beverages (fruits, vegetables, nuts, seeds, herbs, spices, tea and red wine).

Red wine oxidation: oxygen consumption kinetics and high resolution uplc-ms analysis

Oxygen is playing a major role in wine ageing and conservation. Many chemical oxidation reactions occur but they are difficult to follow due to their slow reaction times

Integrated sustainability assessment in viticulture: An indicator-based approach applied to organic vineyards

Over the past two decades, sustainable vineyard management practices have become increasingly important as the wine industry is facing critical challenges, including climate change, biodiversity loss, and soil degradation.

THE FLAVANOL PROFILE OF SKIN, SEED, WINES, AND POMACE ARE CHARACTERISTIC OF EACH TYPOLOGY AND CONTRIBUTES TO UNDERSTAND THE FLAVAN- 3-OLS EXTRACTION DURING RED WINEMAKING

Wine flavanols are extracted from grape skin and seeds along red winemaking. Potentially, eight flavan-3-ol subunits may be present as monomers or as tannins constituents, being these catechin, epicathechin, gallocatechin, epigallocatechin end the gallates of the mentioned units. In this work the flavanol profiles of grape skins and seeds before (grapes) and after (pomace) red winemaking were studied together with the one in the corresponding wines. The trials were made over two vintages in Vitis vinifera cv. Tannat, Syrah and Marselan from Uruguay.