Terroir 2008 banner
IVES 9 IVES Conference Series 9 Spatial variability of the nutrient distribution in Jerez vineyard soils (Spain)

Spatial variability of the nutrient distribution in Jerez vineyard soils (Spain)

Abstract

From a fertility standpoint, the vine has to extract from the soil mineral substances necessary for its existence. However, the amount of certain available nutrients does not always correspond to a proportional increase in quality. Such is the case with nitrogen and organic matter and is in contrast to that of P and K, whose presence has a positive relation to quality. Most of the vintage wines come from vineyards located on calcium-rich soils, which have a complex effect on their quality. It is therefore necessary to characterize the soil for fertilizer practices in an objective way. The production area of Jerez has a notable environmental variability due to the landscape morphology (hills and plains), soil characteristics and the climate conditions due to its oceanic proximity. To assess the fertility of the soils of different vineyards and detect potential imbalances that may impede the growth of the vine and affect its production, a study has been made of distribution parameters such as O.M., P, K, Ca and Fe available in three plots representing the area of Jerez (Cadiz, Spain).The results have shown that OM and Fe presented a greater homogeneity in their concentration for the entire sample area with variances ranging between 0.09 and 0.82, and between 36 and 90, respectively. For the other nutrients analyzed, the variation between different points within the controlled sample plots was very important, noting interval concentrations of 5900 to 12480 ppm for Ca, from 8 to 158 ppm for P and 342 to 1698 ppm for K. The differences observed in the surface horizon remained in the deeper layers.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

BAENA G. (1); ORDOÑEZ R. (1); SERRANO M.J. (2)

(1) IFAPA Centro Alameda del Obispo, Avda. Menéndez Pidal s.n. 14071, Córdoba. Área de Producción Ecológica y Recursos Naturales. Consejería de Innovación, Ciencia y Empresa de la Junta de Andalucía
(2) IFAPA Centro Rancho de la Merced, Ctra. Trebujena, Km 3.2, Jerez de la Frontera, Cádiz. Área Producción Agraria. Consejería de Innovación, Ciencia y Empresa de la Junta de Andalucía

Contact the author

Keywords

soil fertility, spatial variability, vineyard, potassium content, phosphorus content

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Smoke taint: Understanding and addressing the compositional consequences of grapevine exposure to smoke

Climate change has become a major challenge for grape and wine production around the world

On the stability of spectral features of four vine varieties in Brazil, Chile and France

Satellite images of vineyards in France, Chile, and Brazil are used to study spectral differences between the vine varieties Cabernet Sauvignon, Merlot, Pinot Noir, and Chardonnay, to verify if features of a given variety are conserved at vineyards in completely different terroirs.

Pesticide – Free viticulture: towards agroecological wine-producing socio-ecosystems

Can we cultivate grapevine without pesticides? This is a huge challenge for this emblematic crop, which is one of the largest users of plant protection products. Pesticides are mainly used to protect the vine against leaf diseases (powdery mildew, mildew, black-rot), even in organic farming, which uses copper in particular. What are the research avenues that can help eliminate pesticides today?

The impact of nutrition label formats on wine consumer preferences

Recent regulations concerning alcoholic beverages have prompted producers to revise their product labels to incorporate nutritional information. In this context, qr codes containing such information, known as e-labels, are now being employed on wine labels for the first time.

The evolution of wine tourism: trends, challenges and opportunities for the future

The wine tourism industry has experienced significant transformation over the past years, accelerated by the COVID-19 pandemic.