Terroir 2008 banner
IVES 9 IVES Conference Series 9 Spatial variability of the nutrient distribution in Jerez vineyard soils (Spain)

Spatial variability of the nutrient distribution in Jerez vineyard soils (Spain)

Abstract

From a fertility standpoint, the vine has to extract from the soil mineral substances necessary for its existence. However, the amount of certain available nutrients does not always correspond to a proportional increase in quality. Such is the case with nitrogen and organic matter and is in contrast to that of P and K, whose presence has a positive relation to quality. Most of the vintage wines come from vineyards located on calcium-rich soils, which have a complex effect on their quality. It is therefore necessary to characterize the soil for fertilizer practices in an objective way. The production area of Jerez has a notable environmental variability due to the landscape morphology (hills and plains), soil characteristics and the climate conditions due to its oceanic proximity. To assess the fertility of the soils of different vineyards and detect potential imbalances that may impede the growth of the vine and affect its production, a study has been made of distribution parameters such as O.M., P, K, Ca and Fe available in three plots representing the area of Jerez (Cadiz, Spain).The results have shown that OM and Fe presented a greater homogeneity in their concentration for the entire sample area with variances ranging between 0.09 and 0.82, and between 36 and 90, respectively. For the other nutrients analyzed, the variation between different points within the controlled sample plots was very important, noting interval concentrations of 5900 to 12480 ppm for Ca, from 8 to 158 ppm for P and 342 to 1698 ppm for K. The differences observed in the surface horizon remained in the deeper layers.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

BAENA G. (1); ORDOÑEZ R. (1); SERRANO M.J. (2)

(1) IFAPA Centro Alameda del Obispo, Avda. Menéndez Pidal s.n. 14071, Córdoba. Área de Producción Ecológica y Recursos Naturales. Consejería de Innovación, Ciencia y Empresa de la Junta de Andalucía
(2) IFAPA Centro Rancho de la Merced, Ctra. Trebujena, Km 3.2, Jerez de la Frontera, Cádiz. Área Producción Agraria. Consejería de Innovación, Ciencia y Empresa de la Junta de Andalucía

Contact the author

Keywords

soil fertility, spatial variability, vineyard, potassium content, phosphorus content

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

La haie bocagère comme critère de zonage à l’échelle parcellaire

In the French AOCs, the production area of ​​the raw material can be subject to plot delimitation based on criteria of physical environment and use. On the other hand, many environmental zonings are developing and the AOCs are called upon include provisions relating to these concerns. Hedges, through their effects on local changes in the regional climate and on functional biodiversity, can impact the functioning of vines and orchards. It is for this reason that their consideration as a delimitation criterion is envisaged.

Fermentative volatile compounds and chromatic characteristics can contribute to Italian white wines diversity

Perceived aroma plays an important role in wine quality, and it depends mainly on the volatile composition. Volatile organic compounds (VOCs) from grapes and those formed during winemaking are involved in the sensory complexity of wines. In aroma-neutral winegrape varieties, the winemaking process itself, and particularly alcoholic fermentation (AF), impacts strongly on the organoleptic characteristics of wines due to the formation of volatile alcohols, acids, and esters. In addition, phenolic compounds could contribute not only to the wine color but also to VOCs evolution during AF.

Mechanization of pre-flowering leaf removal under the temperate-climate conditions of Switzerland

Grapevine leaf removal (LR) in the cluster area is typically done between fruit set and cluster closure to create an unfavorable microclimate for fungal diseases, such as Botrytis cinerea and powdery mildew. Grape growers are now turning their attention to pre-flowering LR, which has additional benefits under certain conditions. When applied before flowering, LR strongly affects fruit set and thus the number of berries per cluster. It is therefore a good yield control tool, replacing time-consuming manual cluster thinning (Poni et al. 2006). It also improves berry structure, that is, skin thickness, skin-to-pulp ratio, and berry composition (total soluble solids, titratable acidity, and polyphenols) (Palliotti et al. 2012; Komm and Moyer 2015). By exacerbating competition for assimilates between reproductive and vegetative organs, pre-flowering LR also poses some risks. Excessive yield loss at the same year’s harvest due to a too low fruit set rate is the main concern: intensive pre-flowering LR (100% of the cluster area) can induce up to 50% yield loss in potted vines (Poni et al. 2005). Other parameters, such as cool climatic conditions during flowering, also affect fruit set rate and make it difficult to predict potential yield at harvest. Repeated and overly intensive preflowering LR can have repercussions over time and induce a decline in bud fruiting and plant vigor (Risco et al. 2014).

Mapping plant water status to indirectly assess variability in grape flavonoids and inform selective harvest decisions

Plant water stress affects grape (Vitis vinifera L.) berry composition and is variable in space due to variations in the physical environment at the growing site. Could we use water status maps as a sensitive tool to discriminate between harvest zones?

Water is the most abundant active compound in wine!

Proton relaxation in model and real wines was investigated by fast field cycling NMR relaxometry. Albeit protons of wine are largely belonging to water molecules, their magnetic relaxation rates actually depend on various physico-chemical parameters related to the state of the wine and to its composition.