Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Climate component of terroir 9 The international Internet site of the geoviticulture MCC system

The international Internet site of the geoviticulture MCC system

Abstract

The “Geoviticulture Multicriteria Climatic Classification (MCC) System” was developed to characterize the climate of the wine producing regions of the world. It is a method which determines three climatic indexes and uses them to classify a location. A worldwide database of these indexes in wine producing regions was created using this methodology and the System was made available as a web site (http://www.cnpuv.embrapa.br/ccm). The site presents general information about the Geoviticulture MCC System, describes the methodology, allows searches in the database and the calculation of climatic indexes. Searches may be worldwide or limited to a specific country, and search criteria allow limiting the class for each of the three indexes. Search results are presented as a table specifying location, index values, index classes and the source of the data used. In order to make it easier to visually identify locations with similar climate, an orthogonal color scheme was used for the three indexes. In tropical regions, where grapes may be harvested year-round, a separate index was included for each month of potential harvest. The site includes a reference list and, in some cases, PDF files with the complete papers. The site will be constantly updated as new data becomes available for insertion in the database. The web site is currently available in Portuguese, French and English, and its intention is to make the data available for whichever purpose users may need it

 

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

 Flávio BELLO FIALHO (1) and Jorge TONIETTO (1)

(1) Researcher, Embrapa Uva e Vinho, Caixa Postal 130, 95700-000 – Bento Gonçalves, Brazil

Contact the author

Keywords

climate, database, viticulture

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Territorial delimitation of viticultural “Oltrepo Pavese (Lombardy)” using grape ripening precocity

L’Oltrepò Pavese est une zone de collines de la Lombardie, région située au nord de l’Italie avec un vignoble qui s’étend sur près de 15 000 ha. Cette zone représente la plus grande aire de production de la région et une des A.O.C. les plus étendues de tout le pays. Les cépages les plus cultivés, même historiquement, sont autochtones : la Barbera et la Croatina utilisés pour la production de vin rouge «Oltrepò» et le Pinot noir pour la production de vins mousseux. Pour le zonage viticole de cette A.O.C., il a été pris en considération: le climat, les sols, les caractéristiques viti-vinicoles.

Biotic and abiotic factors affecting physiological aspects underlying vegetative vigour in two commercial grapevine varieties

Grapevine vigour, defined as the propensity to assimilate, store and/or use non-structural sugars for allowing fast growth of shoots and producing large canopies[1], is crucial to optimize vineyard management. Recently, a model has been proposed for predicting the vigor of young grapevines through the measurement of the vegetative growth and physiological parameters, such as water status and gas exchange[2]. Our objectives were (1) to explore the influence of the association of two grapevine varieties (Tempranillo and Cabernet Sauvignon, grafted onto R110 rootstocks) with arbuscular mycorrhizal fungi (AMF) on the vegetative vigour of young plants; and (2) to assess the effect of environmental factors linked to climate change on the vegetative vigour of Cabernet Sauvignon.

Monitoring of alcoholic fermentation: development of an applicable in-line system

Alcoholic fermentation plays a crucial role in the winemaking process. In addition to producing ethanol, it results in the formation of various secondary metabolites that significantly influence the wine’s characteristics.

Soil, vine, climate change – what is observed – what is expected

To evaluate the current and future impact of climate change on Viticulture requires an integrated view on a complex interacting system within the soil-plant-atmospheric continuum under continuous change. Aside of the globally observed increase in temperature in basically all viticulture regions for at least four decades, we observe several clear trends at the regional level in the ratio of precipitation to potential evapotranspiration. Additionally the recently published 6th assessment report of the IPCC (The physical science basis) shows case-dependent further expected shifts in climate patterns which will have substantial impacts on the way we will conduct viticulture in the decades to come.
Looking beyond climate developments, we observe rising temperatures in the upper soil layers which will have an impact on the distribution of microbial populations, the decay rate of organic matter or the storage capacity for carbon, thus affecting the emission of greenhouse gases (GHGs) and the viscosity of water in the soil-plant pathway, altering the transport of water. If the upper soil layers dry out faster due to less rainfall and/or increased evapotranspiration driven by higher temperatures, the spectral reflection properties of bare soil change and the transport of latent heat into the fruiting zone is increased putting a higher temperature load on the fruit. Interactions between micro-organisms in the rhizosphere and the grapevine root system are poorly understood but respond to environmental factors (such as increased soil temperatures) and the plant material (rootstock for instance), respectively the cultivation system (for example bio-organic versus conventional). This adds to an extremely complex system to manage in terms of increased resilience, adaptation to and even mitigation of climate change. Nevertheless, taken as a whole, effects on the individual expressions of wines with a given origin, seem highly likely to become more apparent.

Exploring zoxamide sensitivity in Plasmopara viticola populations: implications for fungicide management in precision agriculture

Fungicides play a critical role in managing grapevine downy mildew caused by the oomycete Plasmopara viticola, a biotrophic and polycyclic pathogen with a high risk of fungicide resistance. Zoxamide, categorized as a low to medium resistance risk, disrupts cell division by inhibiting tubulin polymerization. Resistance to zoxamide is uncommon in field isolates. This six-year study (2017-2022) aimed to detect and quantify zoxamide sensitivity in P. viticola populations across varying resistance pressures in Italian grapevine regions. Analysis of 126 samples from 57 vineyards, mainly in North-Eastern Italy, revealed that most samples exhibited EC50, EC95, and MIC values below 0.1 and 10 mg/L of zoxamide, respectively. Nineteen vineyards showed reduced sensitivity (MIC>100 mg/L), but only four samples were characterized by 24-54% resistant oospores at >100 mg/L of zoxamide.