Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Climate component of terroir 9 The international Internet site of the geoviticulture MCC system

The international Internet site of the geoviticulture MCC system

Abstract

The “Geoviticulture Multicriteria Climatic Classification (MCC) System” was developed to characterize the climate of the wine producing regions of the world. It is a method which determines three climatic indexes and uses them to classify a location. A worldwide database of these indexes in wine producing regions was created using this methodology and the System was made available as a web site (http://www.cnpuv.embrapa.br/ccm). The site presents general information about the Geoviticulture MCC System, describes the methodology, allows searches in the database and the calculation of climatic indexes. Searches may be worldwide or limited to a specific country, and search criteria allow limiting the class for each of the three indexes. Search results are presented as a table specifying location, index values, index classes and the source of the data used. In order to make it easier to visually identify locations with similar climate, an orthogonal color scheme was used for the three indexes. In tropical regions, where grapes may be harvested year-round, a separate index was included for each month of potential harvest. The site includes a reference list and, in some cases, PDF files with the complete papers. The site will be constantly updated as new data becomes available for insertion in the database. The web site is currently available in Portuguese, French and English, and its intention is to make the data available for whichever purpose users may need it

 

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

 Flávio BELLO FIALHO (1) and Jorge TONIETTO (1)

(1) Researcher, Embrapa Uva e Vinho, Caixa Postal 130, 95700-000 – Bento Gonçalves, Brazil

Contact the author

Keywords

climate, database, viticulture

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Targeted and untargeted 1H-NMR analysis for sparkling wine’s authenticity

Studies on wineomics (wine’s metabolome) have increased considerably over the last two decades. Wine results from many environmental, human and biological factors leading to a specific metabolome for each terroir. NMR metabolomics is a particularly effective tool for studying the metabolome since it allows the rapid and simultaneous detection of major compounds from several chemical families.1 Quantitative NMR has already proven its effectiveness in monitoring the authenticity of still wines.

Viticultural Climatic Zoning and Digital Mapping of Rio Grande do Sul – Brazil, using Indices of the Géoviticulture MCC System

The State Rio Grande do Sul is the main producer of Brazilian fine wines, with four viticultural regions. The objective is the characterization of the viticultural climatic potential of the State (total surface of 281.749 km2). The methodology use the Géoviticulture Multicriteria Climatic Classification System (Géoviticulture MCC System), based on three climatic indices – Dryness Index (DI), Heliotermal Index (HI) and Cool Night Index (CI).

Aromatic stability of Syrah and Petit Verdot tropical wines from Brazil

The production of fine wines in the Sub-middle of the São Francisco River Valley, Northeast of Brazil, is relatively recent, about twenty-five years ago. This region presents different characteristics

Dispersive liquid-liquid microextraction for the quantification of terpens in wines

In a highly competitive worldwide market, a current challenge for the beverage sector is to diversify the range of products and to offer wines and spirits with typicity and character.

During alcoholic fermentation, wine yeasts generate a large variety of volatile metabolites, including acetate esters, ethyl fatty acid esters, higher alcohols, volatile fatty acids and volatile sulfur compounds that contribute to the aroma profile of wine. These molecules, refered as fermentative aromas, are the most abundant volatile compounds synthetized by yeasts and the metabolic pathways involved in their formation have been well characterized. Furthermore, other molecules with a major organoleptic impact may be produced during wine fermentation including terpene derivatives. However, little information is available on the contribution of yeasts to the formation of these molecules, in particular on their ability to synthethise de novo the terpens derivatives or to produce hydrolytic enzymes involved in the release of varietal precursors.

Oenological compatibility of biocontrol yeasts applied to wine grapes 

Antagonistic yeasts applied to wine grapes must be compatible with the thereafter winemaking process, avoiding competition with the fermentative Saccharomyces cerevisiae or affecting wine flavour. Therefore, fifteen epiphytic yeasts (6 Metschnikowia sp., 6 Hanseniaspora uvarum, 3 Starmerella bacillaris) previously selected for its biocontrol ability against Alternaria on wine grapes were evaluate for possible competition with S. cerevisiae by the Niche Overlap Index (NOI) employing YNB agar media with 10 mM of 17 different carbonate sources present in wine grapes (proline, asparagine, alanine, glutamic acid, tirosine, arginine, lisine, methionine, glicine, malic acid, tartaric acid, fructose, melibiose, raffinose, rhamnose, sucrose, glucose).