Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Climate component of terroir 9 The international Internet site of the geoviticulture MCC system

The international Internet site of the geoviticulture MCC system

Abstract

The “Geoviticulture Multicriteria Climatic Classification (MCC) System” was developed to characterize the climate of the wine producing regions of the world. It is a method which determines three climatic indexes and uses them to classify a location. A worldwide database of these indexes in wine producing regions was created using this methodology and the System was made available as a web site (http://www.cnpuv.embrapa.br/ccm). The site presents general information about the Geoviticulture MCC System, describes the methodology, allows searches in the database and the calculation of climatic indexes. Searches may be worldwide or limited to a specific country, and search criteria allow limiting the class for each of the three indexes. Search results are presented as a table specifying location, index values, index classes and the source of the data used. In order to make it easier to visually identify locations with similar climate, an orthogonal color scheme was used for the three indexes. In tropical regions, where grapes may be harvested year-round, a separate index was included for each month of potential harvest. The site includes a reference list and, in some cases, PDF files with the complete papers. The site will be constantly updated as new data becomes available for insertion in the database. The web site is currently available in Portuguese, French and English, and its intention is to make the data available for whichever purpose users may need it

 

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

 Flávio BELLO FIALHO (1) and Jorge TONIETTO (1)

(1) Researcher, Embrapa Uva e Vinho, Caixa Postal 130, 95700-000 – Bento Gonçalves, Brazil

Contact the author

Keywords

climate, database, viticulture

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Oxidation vs reduction: the fate of tannins, pigments, vscs, color,SO2 and metabolomic fingerprint

The management of oxygen during winemaking and aging is a big issue in order to achieve high quality wines. The correct amount of O2 improves aroma, astringency, bitterness and color, however an excess of oxygen promotes the appearance of yellow

Can plant shaking reduce the incidence of Botrytis?

Wine production is expanding in Scandinavia with a focus on organic growing, and Solaris becoming the signature grape of the region.

Treated wastewater irrigation: how to manage water salinity without reducing its nutrients content?

Nutrients in municipal treated wastewater (N, P, K, mainly) are a particular advantage in this source over conventional irrigation water sources

VineyardFACE: Investigation of a moderate (+20%) increase of ambient CO2 level on berry ripening dynamics and fruit composition

Climate change and rising atmospheric carbon dioxide concentration is a concern for agriculture, including viticulture. Studies on elevated carbon dioxide have already been on grapevines, mainly taking place in greenhouses using potted plants or using field grown vines under higher CO2 enrichment, i.e. >650 ppm. The VineyardFACE, located at Hochschule Geisenheim University, is an open field Free Air CO2 Enrichment (FACE) experimental set-up designed to study the effects of elevated carbon dioxide using field grown vines (Vitis vinifera L. cvs. Riesling and Cabernet Sauvignon). As the carbon dioxide fumigation started in 2014, the long term effects of elevated carbon dioxide treatment can be investigated on berry ripening parameters and fruit metabolic composition.
The present study aims to investigate the effect on fruit composition under a moderate increase (+20%; eCO2) of carbon dioxide concentration, as predicted for 2050 on both Riesling and Cabernet Sauvignon. Berry composition was determined for primary (sugars, organic acids, amino acids) and secondary metabolites (anthocyanins). Special focus was given on monitoring of berry diameter and ripening rates throughout three growing seasons. Compared to previous results of the early adaptative phase of the vines [1], our results show little effect of eCO2 treatment on primary metabolites composition in berries. However, total anthocyanins concentration in berry skin was lower for eCO2 treatment in 2020, although the ratio between anthocyanins derivatives did not differ.
[1] Wohlfahrt Y., Tittmann S., Schmidt D., Rauhut D., Honermeier B., Stoll M. (2020) The effect of elevated CO2 on berry development and bunch structure of Vitis vinifera L. cvs. Riesling and Cabernet Sauvignon. Applied Science Basel 10: 2486

Une procédure de mise à jour des zones AOC

In France, one of INAO missions is to delimit the production area of the « Appellations d’origine contrôlées » (AOC). For wine AOC, the delimitation of plots allows for identifying plots of land that respond to technical criteria of the vine location, criteria adapted in every appellation. Some old delimitations AOC are not in adequacy with their territory. Indeed, in spite the existence of a politic aiming to protect production areas AOC, urbanization, road infrastructure or quarries occupy surfaces classified in AOC today.