Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Climate component of terroir 9 Viticultural climate effect on the sensorial perception of wines. Methodological elements for a modelling at a world level

Viticultural climate effect on the sensorial perception of wines. Methodological elements for a modelling at a world level

Abstract

The objective of this study was to develop a methodology capable of modeling the effect of viticultural climate on wine sensory characteristics. The climate was defined by the Géoviticulture Multicriteria Climatic Classification System (Tonietto and Carbonneau, 2004), based on the Heliothermal index (HI), Cool Night index (CI) and Dryness index (DI). The sensory wine description was made according with the methodology established by Zanus and Tonietto (2007). In this study we focused on the 5 principal wine producing regions of Brazil: Serra Gaúcha, Serra do Sudeste, Campanha (Meridional and Central), Planalto Catarinense and Vale do Submédio São Francisco. The results from Principal Component Analysis (PCA) show the HI and CI opposed to the DI. High HI values were associated to a lower perception of acidity, as well as to a lower perception of concentration (palate) and persistence by mouth. For the red wines, high HI values were positively associated with alcohol (palate), conversely to the DI index, which showed high values related to the perception of tanins and acidity. The higher the CI, the lower were the color intensity, tanins, concentration and persistence by mouth. It may be concluded that viticultural climate – expressed by the HI, CI and DI indexes – adequately explained much of the sensory differences of the wines made in different regions. The methodology proposed and the enlargement of the database it will maybe open the possibility of modeling the part of wine sensory characteristics as dependent variables of the viticultural climate, as defined by the Géoviticulture MCC System.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Jorge TONIETTO (1), Mauro Celso ZANUS (1) and Celito CRIVELLARO GUERRA (1)

(1) Chercheur, Embrapa – Centre National de Recherche de la Vigne et du Vin, Rua Livramento, 515 ; 95700-000 – Bento Gonçalves, Brésil

Contact the author

Keywords

viticultural climate, modeling, wine, tipicity

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Anthocyanin profile is differentially affected by high temperature, elevated CO2 and water deficit in Tempranillo (Vitis vinifera L.) clones

Anthocyanin potential of grape berries is an important quality factor in wine production. Anthocyanin concentration and profile differ among varieties but it also depends on the environmental conditions, which are expected to be greatly modified by climate change in the future. These modifications may significantly modify the biochemical composition of berries at harvest, and thus wine typicity. Among the diverse approaches proposed to reduce the potential negative effects that climate change may have on grape quality, genetic diversity among clones can represent a source of potential candidates to select better adapted plant material for future climatic conditions. The effects of individual and combined factors associated to climate change (increase of temperature, rise of air CO2 concentration and water deficit) on the anthocyanin profile of different clones of Tempranillo that differ in the length of their reproductive cycle were studied. The aim was to highlight those clones more adapted to maintain specific Tempranillo typicity in the future. Fruit-bearing cuttings were grown in controlled conditions under two temperatures (ambient temperature versus ambient temperature + 4ºC), two CO2 levels (400 ppm versus 700 ppm) and two water regimes (well-watered versus water deficit), both in combination or independently, in order to simulate future climate change scenarios. Elevated temperature increased anthocyanin acylation, whereas elevated CO2 and water deficit favoured the accumulation of malvidin derivatives, as well as the acylation and tri-hydroxylation level of anthocyanins. Although the changes in anthocyanin profile observed followed a common pattern among clones, such impact of environmental conditions was especially noticeable in one of the most widely distributed Tempranillo clones, the accession RJ43.

EVALUATION OF THE OENOLOGICAL POTENTIAL OF NEW RESISTANT VARIETIES MEETING TYPICAL BORDEAUX CHARACTERISTICS

Varietal innovation is a major lever for meeting the challenges of the agro-ecological transition of vi-neyards and their adaptation to climate change. To date, selection work has already begun in the Bordeaux region through the Newvine project. The aim of this project is to create new vine varieties with resistance to mildew and powdery mildew, adapted to the climatic conditions of the Bordeaux region and enabling the production of wines that are in line with consumer tastes and the expected typicity of Bordeaux wines.

Non-alcoholic wines: evaluation of chemical profile and biological properties

The market of non-alcoholic wine has notably increased in recent years, driven by growing health awareness and regulatory trends aimed at reducing alcohol consumption.

Sustainable yield management through fruitfulness and bunch architecture manipulation

Vineyards are highly variable and this variation is largely driven by environmental conditions and seasonal variation. For example, warm temperatures

Comparison of ancestral and traditional methods in the elaboration of sparkling wines; preliminary results

Top quality sparkling wines (SW) are mostly produced using the traditional method that implies a second fermentation into the bottle[1]. That is the case of sparkling wines of reputed AOC such as Champagne, Cava or Franciacorta. However, it seems that the first SW was elaborated using the ancestral method in which only one fermentation takes place[2]. That is the case of the classical SW from the AOC Blanquette de Limoux[3]. In both cases, SW age in the bottle during some time in contact with lees favoring yeast’s autolysis[4]. There is a lot of information about traditional method but only few exists about ancestral method. The aim of this work was to compare SW made by the ancestral method with SW made by the traditional method.