Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Climate component of terroir 9 Viticultural climate effect on the sensorial perception of wines. Methodological elements for a modelling at a world level

Viticultural climate effect on the sensorial perception of wines. Methodological elements for a modelling at a world level

Abstract

The objective of this study was to develop a methodology capable of modeling the effect of viticultural climate on wine sensory characteristics. The climate was defined by the Géoviticulture Multicriteria Climatic Classification System (Tonietto and Carbonneau, 2004), based on the Heliothermal index (HI), Cool Night index (CI) and Dryness index (DI). The sensory wine description was made according with the methodology established by Zanus and Tonietto (2007). In this study we focused on the 5 principal wine producing regions of Brazil: Serra Gaúcha, Serra do Sudeste, Campanha (Meridional and Central), Planalto Catarinense and Vale do Submédio São Francisco. The results from Principal Component Analysis (PCA) show the HI and CI opposed to the DI. High HI values were associated to a lower perception of acidity, as well as to a lower perception of concentration (palate) and persistence by mouth. For the red wines, high HI values were positively associated with alcohol (palate), conversely to the DI index, which showed high values related to the perception of tanins and acidity. The higher the CI, the lower were the color intensity, tanins, concentration and persistence by mouth. It may be concluded that viticultural climate – expressed by the HI, CI and DI indexes – adequately explained much of the sensory differences of the wines made in different regions. The methodology proposed and the enlargement of the database it will maybe open the possibility of modeling the part of wine sensory characteristics as dependent variables of the viticultural climate, as defined by the Géoviticulture MCC System.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Jorge TONIETTO (1), Mauro Celso ZANUS (1) and Celito CRIVELLARO GUERRA (1)

(1) Chercheur, Embrapa – Centre National de Recherche de la Vigne et du Vin, Rua Livramento, 515 ; 95700-000 – Bento Gonçalves, Brésil

Contact the author

Keywords

viticultural climate, modeling, wine, tipicity

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Innovative strategies for reducing astringency in Mandilaria wines 

Mandilaria, a red grape variety indigenous to the Aegean islands, is well known for its robust tannins and pronounced astringency, which can challenge the palatability and marketability of its wines. The aim of this study was the reduction of astringency in wines made exclusively from mandilaria grapes through dehydrations practices and targeted winery applications.

Local adaptation tools to ensure the viticultural sustainability in a changing climate

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

What is the fate of oxygen consumed by red wine? Main processes and reaction products

Oxygen consumed by wine is used to oxidize sulfur dioxide and ethanol to form acetaldehyde wine oxygen consumption rate (OCR) was negatively correlated with the initial acetaldehyde level.

Towards a sustainable winery: revalorization of green CO2 for methane production

The FUELPHORIA project explores innovative pathways for sustainable energy production, with DEMO 2 focused on transforming winery-derived CO₂ into methane (CH₄) using renewable hydrogen (H₂).

Influence of the number of CPPU applications on growth, mineral composition and Bunch Stem Necrosis incidence in table grape clusters

The forchlorfenuron (CPPU) application is recommended in table-grape after fruit-set to boost berry sizing, albeit growers also apply CPPU during pre-flowering with controversial advantages. We examined the effect of single (BBCH 15) and double (BBCH 15 and 57) CPPU applications (2.25 mg/L a.s.) in a commercial vineyard. At each time, 75-100 bunches belonging to 6-9 vines were sprayed, and compared with unsprayed (CTRL). Leaf stomatal conductance (gs), cluster stem diameter and length were measured. At harvest, 25 berries/repetition were sampled for chemical composition, BSN incidence was counted (N° necrotic laterals/10 cm of stem) in 40 bunches/repetition. To test the role of air VPD on mineral composition, at BBCH 77, 50 CTRL clusters were bagged to induce a low VPD.