Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Climate component of terroir 9 Viticultural climate effect on the sensorial perception of wines. Methodological elements for a modelling at a world level

Viticultural climate effect on the sensorial perception of wines. Methodological elements for a modelling at a world level

Abstract

The objective of this study was to develop a methodology capable of modeling the effect of viticultural climate on wine sensory characteristics. The climate was defined by the Géoviticulture Multicriteria Climatic Classification System (Tonietto and Carbonneau, 2004), based on the Heliothermal index (HI), Cool Night index (CI) and Dryness index (DI). The sensory wine description was made according with the methodology established by Zanus and Tonietto (2007). In this study we focused on the 5 principal wine producing regions of Brazil: Serra Gaúcha, Serra do Sudeste, Campanha (Meridional and Central), Planalto Catarinense and Vale do Submédio São Francisco. The results from Principal Component Analysis (PCA) show the HI and CI opposed to the DI. High HI values were associated to a lower perception of acidity, as well as to a lower perception of concentration (palate) and persistence by mouth. For the red wines, high HI values were positively associated with alcohol (palate), conversely to the DI index, which showed high values related to the perception of tanins and acidity. The higher the CI, the lower were the color intensity, tanins, concentration and persistence by mouth. It may be concluded that viticultural climate – expressed by the HI, CI and DI indexes – adequately explained much of the sensory differences of the wines made in different regions. The methodology proposed and the enlargement of the database it will maybe open the possibility of modeling the part of wine sensory characteristics as dependent variables of the viticultural climate, as defined by the Géoviticulture MCC System.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Jorge TONIETTO (1), Mauro Celso ZANUS (1) and Celito CRIVELLARO GUERRA (1)

(1) Chercheur, Embrapa – Centre National de Recherche de la Vigne et du Vin, Rua Livramento, 515 ; 95700-000 – Bento Gonçalves, Brésil

Contact the author

Keywords

viticultural climate, modeling, wine, tipicity

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Grapevine is grown grafted in most of the world largely because of Phylloxera. Rootstocks not only provide tolerance to Phylloxera, but also ensure the supply of water and mineral nutrients to the scion. Rootstocks are an important means of adaptation to environmental conditions if we want to conserve the typical features of the currently used scion genotypes. To aid this adaptation, we can exploit the large diversity of rootstocks used worldwide. To fully explore this existing rootstock diversity, this work benefits from the unique GreffAdapt vineyard, in which four scion genotypes were studied onto 55 commercial rootstocks in three blocks. The aim of this study was to characterise rootstock regulation of scion mineral status and how it relates to scion development.

Ozone treatment: a solution to improve sanitary and physiological quality of vine plant

The vineyard world is faced to a lot of fungal diseases. Grapevine Trunk Diseases (GTD) are some of the major. After exhibiting chronical foliar symptoms, grapevines can die by apoplexy within only few days. A range species of fungi was described to be associated with the apparition of early symptoms of GTD. It is well known that ozone dissolved into water is a powerful disinfectant with no remanence. The main goal of this study was to test the efficiency of this process on different fungal species associated with GTD in vitro and in planta conditions.

Overview on wine and health 32 years after the French paradox 

Phenolic compounds or polyphenols are the most abundant and ubiquitous secondary metabolites present in the plant kingdom with more than 8000 phenolic structures currently known. These compounds play an important role in plant growth and reproduction, providing protection against biotic and abiotic stress such as pathogen and insect attack, UV radiation and wounding. (poly)phenols are widely distributed in the human diet mainly in plant-derived food and beverages (fruits, vegetables, nuts, seeds, herbs, spices, tea and red wine).

Enhancing hydric stress tolerance by editing the VviMYB60 promoter with CRISPR/Cas9 

Climate change presents increasing challenges to viticulture, particularly with rising water stress contributing significantly to yield losses and damages. The identification of the MYB60 transcription factor, which regulates stomatal opening and closing in Arabidopsis thaliana and Vitis vinifera, offers potential solutions. Notably, knockout studies in Arabidopsis have shown reduced stomatal opening and increased drought tolerance in myb60 mutants. Additionally, the grapevine ortholog, VviMYB60, can restore the wild-type phenotype of Arabidopsis myb60 mutants. Further investigation of the Arabidopsis promoter region has revealed that mutations in DOF motifs lead to reduced expression of AtMYB60.

The revision of the delimitation of the AOC “Champagne”

The Champagne vine-growing region has played a pioneering role in the delimitation of appellations of origin (AOC). The implementation of the Act of July, 22nd 1927 has led to drawing up lists of vine plots based on the criterion of vine cultivation antecedence.