Terroir 2008 banner
IVES 9 IVES Conference Series 9 Effect of row direction in the upper part of the hillside vineyard of Somló, Hungary

Effect of row direction in the upper part of the hillside vineyard of Somló, Hungary

Abstract

Hillside vineyards have a great potential to produce world class wines. The unique microclimate lead to the production of rich, flavory wines. However site development needs land clearing, rock removal, terracing, engineered water collecting drainage system. Because of the very high cost of establishment every part of the plantation needs to be very carefully planned, designed and established. Row direction has a pronounced effect on sunlight interception. The amounts of direct light are absorbed by the canopy is influenced by the row direction. Commonly known that greater amounts of light absorbed by the canopy the mid-morning and mid-afternoon in rows directed north-south compared to east –west. But information on the effects of row direction on the fruit quality of grapevines are limited. Therefore we established an experiment on hill Somló to determine if row direction has role to improve the quality or not. We have 24 % less yield, higher sugar content, lower acid content in row direction east-west compared to the north-south in 2006. Similar results were obtained in 2007 as well. The catechin contents differed statistically only among other poliphenols between the row directions. The wine analysis and organoleptical evaluation showed that the east-west oriented rows produced better quality of wine in 2006. We have very extreme weather conditions in 2007 in July and August therefore we have not got the same picture in 2007 like in 2006. Even if we have only two year results the clear influence of row direction pictured on the quality of the yield.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Laszlo KOCSIS (1), Péter VARGA (2), Péter PODMANICZKY (1), Erik TARCZAL (1), Sándor BARAT (3), Attila CSASZAR (3), János MAJER (2)

(1) University of Pannonia, Georgikon Faculty of Agriculture; 8360 Keszthely, Deák F. u. 16
(2) Ministry of Agriculture and Rural Development, Research Institute for Viticulture and Enology, Badacsony; 8261 Badacsonytomaj, Római út 165
(3) Kreinbacher Estate Wine, Trading and Hospitality Limited, 8481 Somlóvásárhely P.O.Box 3

Contact the author

Keywords

row direction, quality, grape production, upper hill vineyard

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

What metabolomics teaches us about wine shelf life

The metabolomics era started about 22 years ago, and wine was one of the first foodstuff subjects of analysis and investigation by this technique.

Impact of temperature and solar radiation on grape composition variability in the Saint-Emilion winegrowing area 

Grape composition is strongly influenced by climate conditions. Their expected modifications in near future, notably because of increased temperatures, could significantly modify the biochemical composition of berries at harvest, and thus wine typicity and quality. Elevated temperatures favor sugar accumulation in grapes, enhance malic acid degradation and modify the amino acid content. They also reduce significantly anthocyanin accumulation in Merlot, leading to the imbalance between anthocyanins and sugars, while no significant effects on final anthocyanin levels were reported in Tempranillo[1] and finally affect aromas or aroma precursors.

The role of molecular ecophysiology in terroir expression

Terroir is a complex concept which associates soil, climate, grape variety and cultural practices that include the training system and oenological techniques. It is a type of social construction with man at its centre. The typicality of a wine is also a social construction which is the result of an agreement among specialists vis à vis a given quality of the wine whose references are the wine’s origins (e.g. terroir) and taste.

Revealing the Barossa zone sub-divisions through sensory and chemical analysis of Shiraz wine

The Barossa zone is arguably one of the most well-recognised wine producing regions in Australia and internationally; known mainly for the production of its distinct Shiraz wines. However, within the broad Barossa geographical delimitation, a variation in terroir can be perceived and is expressed as sensorial and chemical profile differences between wines. This study aimed to explore the sub-division classification across the Barossa region using chemical and sensory measurements. Shiraz grapes from 4 different vintages and different vineyards across the Barossa (2018, n = 69; 2019, n = 72; 2020, n = 79; 2021, n = 64) were harvested and made using a standardised small lot winemaking procedure. The analysis involved a sensory descriptive analysis with a highly trained panel and chemical measurement including basic chemistry (e.g. pH, TA, alcohol content, total SO2), phenolic composition, volatile compounds, metals, proline, and polysaccharides. The datasets were combined and analysed through an unsupervised, clustering analysis. Firstly, each vintage was considered separately to investigate any vintage to vintage variation. The datasets were then combined and analysed as a whole. The number of sub-divisions based on the measurements were identified and characterised with their sensory and chemical profile and some consistencies were seen between the vintages. Preliminary analysis of the sensory results showed that in most vintages, two major groups could be identified characterised with one group showing a fruit-forward profile and another displaying savoury and cooked vegetables characters. The exploration of distinct profiles arising from the Barossa wine producing region will provide producers with valuable information about the regional potential of their wine assisting with tools to increase their target market and reputation. This study will also provide a robust and comprehensive basis to determine the distinctive terroir characteristics which exist within the Barossa wine producing region.

Yeast derivatives: an innovative approach to produce Oenococcus oeni under biofilm form?

The malolactic fermentation can occur naturally or be induced by inoculation of selected bacterial strains, most commonly of Oenococcus oeni.