Terroir 2008 banner
IVES 9 IVES Conference Series 9 Effect of row direction in the upper part of the hillside vineyard of Somló, Hungary

Effect of row direction in the upper part of the hillside vineyard of Somló, Hungary

Abstract

Hillside vineyards have a great potential to produce world class wines. The unique microclimate lead to the production of rich, flavory wines. However site development needs land clearing, rock removal, terracing, engineered water collecting drainage system. Because of the very high cost of establishment every part of the plantation needs to be very carefully planned, designed and established. Row direction has a pronounced effect on sunlight interception. The amounts of direct light are absorbed by the canopy is influenced by the row direction. Commonly known that greater amounts of light absorbed by the canopy the mid-morning and mid-afternoon in rows directed north-south compared to east –west. But information on the effects of row direction on the fruit quality of grapevines are limited. Therefore we established an experiment on hill Somló to determine if row direction has role to improve the quality or not. We have 24 % less yield, higher sugar content, lower acid content in row direction east-west compared to the north-south in 2006. Similar results were obtained in 2007 as well. The catechin contents differed statistically only among other poliphenols between the row directions. The wine analysis and organoleptical evaluation showed that the east-west oriented rows produced better quality of wine in 2006. We have very extreme weather conditions in 2007 in July and August therefore we have not got the same picture in 2007 like in 2006. Even if we have only two year results the clear influence of row direction pictured on the quality of the yield.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Laszlo KOCSIS (1), Péter VARGA (2), Péter PODMANICZKY (1), Erik TARCZAL (1), Sándor BARAT (3), Attila CSASZAR (3), János MAJER (2)

(1) University of Pannonia, Georgikon Faculty of Agriculture; 8360 Keszthely, Deák F. u. 16
(2) Ministry of Agriculture and Rural Development, Research Institute for Viticulture and Enology, Badacsony; 8261 Badacsonytomaj, Római út 165
(3) Kreinbacher Estate Wine, Trading and Hospitality Limited, 8481 Somlóvásárhely P.O.Box 3

Contact the author

Keywords

row direction, quality, grape production, upper hill vineyard

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Analyse climatique à l’échelle des Coteaux du Layon

Les études d’impact du climat sur la vigne nécessite de descendre à des échelles très fines car les facteurs climatiques sont tributaires de la topographie, la végétation, les expositions … Dans le cadre du programme ANR-JC Terviclim, 22 capteurs ont été installés dans les vignobles des Coteaux du Layon afin de caractériser le climat particulier de ces terroirs. L’analyse des températures montre de fortes disparités entre les data loggers et pourtant situés parfois sur les mêmes parcelles ou sur des parcelles voisines. Les indices bioclimatiques tels les degrés jours sont également contrastés suivant la situation des capteurs sur les coteaux.

Understanding the complexity of grapevine winter physiology in the face of changing climate

The vast majority of our understanding of grapevine physiology is focused on the processes that occur during the growing season. Though not obvious, winter physiological changes are dynamic and complex, and have great influence on the survival and phenology of grapevines. In cool and cold climates, winter temperatures are a constant threat to vine survival. Additionally, as climate changes, grapevine production is moving toward more traditionally cool and cold climates, either latitudinal or altitudinal in location. Our research focuses on understanding how grapevines navigate winter physiological changes and how temperature impacts aspects of cold hardiness and dormancy. Through these studies, we have gained keen insight into the connections between winter temperature, maximum cold haridness, and budbreak phenology, that can be used to develop prediction models for viticulture in a changing climate.

Making sense of a sense of place: precision viticulture approaches to the analysis of terroir at different scales

Agriculture, natural resource management and the production and sale of products such as wine are increasingly data-driven activities. Thus, the use of remote and proximal crop and soil sensors to aid management decisions is becoming commonplace and ‘Agtech’ is proliferating commercially; mapping, underpinned by geographical information systems and complex methods of spatial analysis, is widely used…

OPTIMIZING THE IDENTIFICATION OF NEW THIOLS AT TRACE LEVEL IN AGED RED WINES USING NEW OAK WOOD FUNCTIONALISATION STRATEGY

During bottle aging, many thiol compounds are involved in the expression of bouquet of great aged red wines according to the quality of the closure.1,2 Identifying thiol compounds in red wines is a challenging task due several drawbacks including, the complexity of the matrix, the low concentration of these impact compounds and the amount of wine needed.3,4
This work aims to develop a new strategy based on the functionalisation of oak wood organic extracts with H₂S, to produce new thiols, in order to mimic what can happen in red wine during bottle aging. Following this approach and through sensory analysis experiments, we demonstrated that the vanilla-like aroma of fresh oak wood was transformed into intense “meaty” nuances similar to those found in old but non oxidized red wines.

ePROSECCO: Historical, cultural, applied philosophy analysis and process, product and certification innovation, for the “sustainable original progress and promotion 4.1c” of a historic and famous territory and wine

According to the algorithm “A step back towards the future 4.1C”, (Cargnello,1986a, 1987d, 1988a.b, 1991, 1993, 1994b, 1995, 1999a.e, 2000b, 2007c, 2008a, 2009d, 2013; and according to the principles of “Charter of Sustainable Viticulture BIO‐MetaEthics 4.1CC” of GiESCO (Carbonneau and Cargnello, 2003 2015, 2017), the historical, applied philosophy and productive analysis connected to the innovations and to the “Certification of the Universal Holistic MetaEthical Sustainability 4.1C” “indexed new global production model 4.1C” has always been fundamental, especially for the “Prosecco Territory” and for the “Prosecco Wine” to design and implement their synergistic future “Sustainable and Certificable 4.1CC” according to the principles of the “Charter of Sustainable Viticulture BIO‐MetaEthics 4.1CC” by the GiESCO (Carbonneau and Cargnello, lc, Cargnello et Carbonneau, 2007, 2018), and of the Conegliano Campus 5.1C. (Cargnello, lc). Nowadays, people think that Prosecco is a wine from the Veneto Region (from Conegliano and Valdobbiadene in particular), while it comes from Friuli‐Venezia Giulia Region (in North Eastern Italy, such as Veneto) more precisely from “Prosecco” in the Municipality of Trieste (TS‐Italy), as documented in 1382 and in 1548, when Pier Andrea Mattioli, described “that ancient wine, which is born in Prosecco”, as a wine with the following characteristics “thin, clear, shiny, golden, odorous and pleasant to taste». In 1888 at the “Wine Fair” of Trieste there were the “Sparkling wine Prosecco” by Giovanni Balanc, by Giuseppe Klampferer and that one by Marino Luxa. In the 19th century, many expressed their appreciation for the “Prosecco” of Trieste. In order to implement intra and extra territorial and cross‐border relations, as well as, the “Certification of: Products, Companies, Territory, Bio‐MétaÉthique District 4.1C” of Prosecco, a series of activities and researches were conducted in 8 companies: 5 in the “Territory of Prosecco” (TS) in which the principles of “Charter of Sustainable Viticulture BIO‐MetaEthics 4.1CC” of GiESCO (Carbonneau and Cargnello, lc) have been successfully applied. In particolar: 1‐ new and original “Sustainable 4.1C global production model” developed also to prevent the problems caused by wild boar, roe deer, and birds while safeguarding their “psychophysical wellness”, as well as the “psychophysical wellness 4.1C” of the macro and micro flora and fauna, of the biodiversity, of the landscape, etc. (Cargnello, lc), 1.2‐ chemical weed control and “Non MetaEthics 4.1C” processing with the total grass growing of the ground without or with mowing, better if it is manual to protect grass, air and soil, 2‐ recovery of “Historic”: land, vineyards, vines, biodiversity, landscapes, productions, products, … , 3‐ production of the famous “Prosekar, also rosé, of Prosecco” and “Prosecco di Prosecco”, according to “A step back towards the future 4.1C” 4‐ to offer a deserved psychophysical well‐being to the “Prosecco Territory” and entrepreneurs.