terclim by ICS banner
IVES 9 IVES Conference Series 9 Open-GPB 9 Open-GPB-2024 9 Flash - New biotechnological tools 9 Deciphering the function and regulation of VviEPFL9 paralogs to modulate stomatal density in grapevine through New Genomic Techniques

Deciphering the function and regulation of VviEPFL9 paralogs to modulate stomatal density in grapevine through New Genomic Techniques

Abstract

Stomata are microscopic pores mainly located in leaf epidermis, allowing gas exchanges between plants and atmosphere. Stomatal initiation relies on the transcription factor SPEECHLESS which is mainly regulated by the MAP kinase cascade, in turn controlled by small signaling peptides, the Epidermal Patterning Factors (EPF and EPF-Like), namely EPF1, EPF2 and EPFL9. While EPF1 and EPF2 induce the inhibition of SPEECHLESS, their antagonist, EPFL9, stabilizes it, leading to stomatal formation. In grapevine, there are two paralogs for EPFL9, VviEPFL9-1 and VviEPFL9-2. Despite their structural similarity, it remains unclear whether they are differentially regulated and have distinct roles. In our study we showed that while VviEPFL9-1 is expressed only in the apex, VviEPFL9-2 is expressed both in the apex and in mature leaves along the plant axis and is significantly repressed by ABA. To support experimental data, an in-silico transcriptomic analysis has been carried out using publicly available datasets. In addition, both genes were functionally characterized using knock-out (KO) mutants generated via CRISPR/Cas9. Leaf stomatal density and gas exchange parameters were significantly different between ‘Sugraone’ WT plants and VviEPFL9-2 KO lines, whereas the differences were negligible between WT and VviEPFL9-1 KO lines. Moreover, a water stress experiment was carried out to deeply compare the physiology of edited lines and WT plants under drought conditions. Our results suggest that VviEPFL9 paralogs have distinct roles in determining stomatal plasticity during leaf growth, and that VviEPFL9-2 may be considered a key target to increase grapevine resilience to water deficiency.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Umar Shahbaz1,2, Pierre Videau3, Katerina Labonova3, David Navarro-Payá4, Alvaro Vidal1,2, José Tomás Matus4, Mickael Malnoy1, Olivier Zekri3, Fabio Fiorani5, Michele Faralli2, Lorenza Dalla Costa1*

1 Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
2 Center Agriculture Food Environment (C3A), University of Trento, 38098, San Michele all’Adige, Italy
3 Novatech, Mercier Groupe, Le Champ des Noels, France
4 Institute for Integrative Systems Biology, Universitat de València-CSIC,46980 Paterna, Valencia, Spain
5 Institute of Bio- and Geo-Sciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany

Contact the author*

Keywords

Vitis vinifera, Epidermal Patterning Factors, CRISPR/Cas9, gas exchange, water stress

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Anthocyanin profile is differentially affected by high temperature, elevated CO2 and water deficit in Tempranillo (Vitis vinifera L.) clones

Anthocyanin potential of grape berries is an important quality factor in wine production. Anthocyanin concentration and profile differ among varieties but it also depends on the environmental conditions, which are expected to be greatly modified by climate change in the future. These modifications may significantly modify the biochemical composition of berries at harvest, and thus wine typicity. Among the diverse approaches proposed to reduce the potential negative effects that climate change may have on grape quality, genetic diversity among clones can represent a source of potential candidates to select better adapted plant material for future climatic conditions. The effects of individual and combined factors associated to climate change (increase of temperature, rise of air CO2 concentration and water deficit) on the anthocyanin profile of different clones of Tempranillo that differ in the length of their reproductive cycle were studied. The aim was to highlight those clones more adapted to maintain specific Tempranillo typicity in the future. Fruit-bearing cuttings were grown in controlled conditions under two temperatures (ambient temperature versus ambient temperature + 4ºC), two CO2 levels (400 ppm versus 700 ppm) and two water regimes (well-watered versus water deficit), both in combination or independently, in order to simulate future climate change scenarios. Elevated temperature increased anthocyanin acylation, whereas elevated CO2 and water deficit favoured the accumulation of malvidin derivatives, as well as the acylation and tri-hydroxylation level of anthocyanins. Although the changes in anthocyanin profile observed followed a common pattern among clones, such impact of environmental conditions was especially noticeable in one of the most widely distributed Tempranillo clones, the accession RJ43.

How do we describe wine imagery? Expertise shapes language usage and multimodal imagery for wine

The acquisition of wine expertise is a multi-faceted and multisensory process with implications for sensory perception, attention, memory, and language production. With the prevalence of the predictive model of brain functioning, one area of burgeoning research interest involves wine mental imagery, since the brain relies on imagined experiences to build predictions for the future. Recent evidence has shown that, for instance, those with higher imagery vividness are more susceptible to wine advertising. However, little is known about the association between mental imagery and other associated cognitive processes, such as the ability to produce words that describe such imagery. 

Using nanopore skim-sequencing to characterise regional epigenetic variability in New Zealand Sauvignon Blanc

Recent advancements in genomic sequencing technologies have enabled more detailed and direct studies of DNA methylation, which can help characterise epigenetic variations in plants. The Grapevine Improvement team at the Bragato Research Institute is studying the use of Oxford Nanopore sequencing to identify epigenetic changes associated with environmental differences among clonally-propagated grapevines.

This study involved sequencing DNA from the same Sauvignon Blanc clone, sourced from diverse New Zealand viticultural regions, using the PromethION platform.

Impact of dried stems in winemaking on Veneto Passito wines

The use of stems during fermentation is generally avoided due to the herbaceous off-odors they can impart to the wine. [1].

Evaluation of sap flow and trunk diameter measurements in grapevines using time series decomposition

Grapevines are very sensitive to weather conditions. Excessively hot and dry periods trigger the activation of survival mechanisms, such as reduction of crop transpiration and the redistribution of water. Monitoring these mechanisms is, therefore, essential to better understand the grapevine water dynamics and maximize water-use efficiency.