Terroir 2008 banner
IVES 9 IVES Conference Series 9 Enological potential of red grapes: cultivars and geographic origin of vineyards

Enological potential of red grapes: cultivars and geographic origin of vineyards

Abstract

The study of technologic and phenolic maturation is very efficient to determinate quality potential of red grapes cultivars and clones under different maturity levels or geographic origins. This study was made in order to evaluate the enologic potential of the grape cultivars from the six Brazilian viticultural regions: Planalto Catarinense – Santa Catarina State (28°18’S – 49°56’W – altitude between 900 and 1400m); Planalto de Palmas – Santa Catarina State (27°00’S – 52°00’W – altitude between 1200 and 1400m); Campos de Cima da Serra – Rio Grande do Sul State (28°33’S – 50°42’W – altitude between 900 and 1100m); Serra Gaúcha – Rio Grande do Sul State (29°10’S – 51°32’W – altitude between 450 and 700m); Serra do Sudeste – Rio Grande do Sul State (30°33’S – 52°31’W – altitude between 350 and 450m); Campanha Meridional – Rio Grande do Sul State (30°53’S – 55°32’W – altitude between 200 and 350m). The variables analyzed from the grapes were: in the whole grapes: physic analysis (grape weight; % of skins, seeds and meet in relation to total weight; seeds number and % of juice). In the juice: levels of sugars, organic acids and pH. In the skins and seeds: levels and stractibility of anthocyans and tannins of skins, levels of seed tannins, total polyphénols, total tannins and skin tannins/seed tannins ratio. The totality of results makes the technologic and phenolic profile of the grapes at maturity and made possible put and discriminate one cultivar in relation to geographic origin and different cultivars into the particular region. The most significant differences concerning enological potential of cultivars and regions were observed for sugar levels, titrable acidity, total anthocyanins and total polyphénols.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Celito CRIVELLARO GUERRA, Jorge TONIETTO and Gisèle MION GUGEL

Embrapa, Centre National de Recherche de la Vigne et du Vin, B.P. 130, C.P. 95.700-000, Bento Gonçalves, RS, Brésil

Contact the author

Keywords

 Maturation, raisins noirs, cépages, régions, origine géographique 

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Effect of irrigation regime on carbon isotope ratio (δ13c) in different grapevines

In Castilla-La Mancha as other winegrowing regions, vineyards suffer the effects of the global climate warming. Severe spring and summer droughts are increasingly frequent, which concur with the phenological stages most susceptible to water and temperature stress. Under these conditions, irrigation use is required in order to ensure the vineyard growing sustainability. However water resources are increasingly limited, for this reason is required to choose cultivars displaying high water use efficiency.

The role of rootstock and its genetic background in plant mineral status

In this video recording of the IVES science meeting 2025, Marine Morel (EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave-d’Ornon, France) speaks about the role of rootstock and its genetic background in plant mineral status. This presentation is based on an original article accessible for free on OENO One.

How small amounts of oxygen introduced during bottling and storage can influence the metabolic fingerprint and SO2 content of white wines

The impact of minute amounts of headspace oxygen on the post-bottling development of wine is generally considered to be very important, since oxygen, packaging and storage conditions can either damage or improve wine quality. This is reflected in the generalised use of inert bottling lines, where the headspace between the white wine and the stopper is filled with an inert gas. This experiment aimed to address some open questions about the chemistry of the interaction between wine and oxygen, crucial for decisions regarding optimal closure. While it is known that similar amounts of oxygen affect different wines to a variable extent, our knowledge of chemistry is not sufficient to construct a predictive method.

Managing precision irrigation in vineyards: hydraulic and molecular signaling in eight grapevine varieties

Understanding the physiological and molecular bases of grapevine responses to mild to moderate water deficits is fundamental to optimize vineyard irrigation management and identify the most suitable varieties. In Mediterranean regions, the higher frequency of heat waves and droughts highlights the importance of precision irrigation to meet vine water demands and demonstrates the necessity for a deeper understanding of the different physiological responses among varieties under water stress. In this context, previous reports show an interplay between stomatal regulation of transpiration and changes in leaf hydraulic conductivity, also with the involvement of aquaporins (AQPs), particularly under water stress. However, how those signaling mechanisms are regulated in different grapevine varieties along phenological phases is unclear.

Oenological potential of cv. Tortojona: A minority grape variety from Extremadura, southwest Spain

This work, included in the VAVEGEX project, aims to evaluate the oenological, phenolic, chromatic and sensory characteristics of the grapes, must and wines produced from cv. Tortojona, minority variety grown in Extremadura region (Southwest, Spain).