Terroir 2008 banner
IVES 9 IVES Conference Series 9 Enological potential of red grapes: cultivars and geographic origin of vineyards

Enological potential of red grapes: cultivars and geographic origin of vineyards

Abstract

The study of technologic and phenolic maturation is very efficient to determinate quality potential of red grapes cultivars and clones under different maturity levels or geographic origins. This study was made in order to evaluate the enologic potential of the grape cultivars from the six Brazilian viticultural regions: Planalto Catarinense – Santa Catarina State (28°18’S – 49°56’W – altitude between 900 and 1400m); Planalto de Palmas – Santa Catarina State (27°00’S – 52°00’W – altitude between 1200 and 1400m); Campos de Cima da Serra – Rio Grande do Sul State (28°33’S – 50°42’W – altitude between 900 and 1100m); Serra Gaúcha – Rio Grande do Sul State (29°10’S – 51°32’W – altitude between 450 and 700m); Serra do Sudeste – Rio Grande do Sul State (30°33’S – 52°31’W – altitude between 350 and 450m); Campanha Meridional – Rio Grande do Sul State (30°53’S – 55°32’W – altitude between 200 and 350m). The variables analyzed from the grapes were: in the whole grapes: physic analysis (grape weight; % of skins, seeds and meet in relation to total weight; seeds number and % of juice). In the juice: levels of sugars, organic acids and pH. In the skins and seeds: levels and stractibility of anthocyans and tannins of skins, levels of seed tannins, total polyphénols, total tannins and skin tannins/seed tannins ratio. The totality of results makes the technologic and phenolic profile of the grapes at maturity and made possible put and discriminate one cultivar in relation to geographic origin and different cultivars into the particular region. The most significant differences concerning enological potential of cultivars and regions were observed for sugar levels, titrable acidity, total anthocyanins and total polyphénols.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Celito CRIVELLARO GUERRA, Jorge TONIETTO and Gisèle MION GUGEL

Embrapa, Centre National de Recherche de la Vigne et du Vin, B.P. 130, C.P. 95.700-000, Bento Gonçalves, RS, Brésil

Contact the author

Keywords

 Maturation, raisins noirs, cépages, régions, origine géographique 

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Model-assisted analysis of the root traits underlying RSA genotypic diversity in Vitis: a promising approach for rootstock selection?

By dissecting the root system architecture (RSA) into its underpinning components (e.g. root emission, axial growth, radial growth, branching, root direction or tropism) and identifying the relationships between them, functional-structural 3D root models are promising tools for analyzing the diversity and complexity of root system phenotypes with Genotype × Environment interactions. The model parameters are assumed to be synthetic traits, less influenced by the environment, and consequently with less polygenic architectures than the integrative RSA traits they drive. Root models can serve as a basis for in silico development of root system ideotypes by highlighting the developmental processes and parameters that most likely influence RSA fitness.

Investigating the impact of grape exposure and UV radiations on rotundone in Vitis vinifera L. Tardif grapes under field trial conditions

Rotundone is the main aroma compound responsible for peppery notes in wines whose biosynthesis is negatively affected by heat and drought. Through the alteration of precipitation regime and the increase in temperature during maturation, climate change is expected to affect wine peppery typicality. In this context there is a demand for developing sustainable viticultural strategies to enhance rotundone accumulation or limit its degradation. It was recently proposed that ultraviolet (UV) radiations could stimulate rotundone production. The aim of this study was to investigate under field trial conditions the impact of grape exposure and UV treatments on rotundone in Vitis vinifera L. Tardif, an almost extinct grape variety from south-west France that can express particularly high rotundone levels. Four different treatments were compared in 2021 to a control treatment using a randomised complete block design with three replications per treatment. Grape exposure was manipulated through early or late defoliation. Leaf and laterals shoots were removed at Eichorn Lorenz growth stages 32 or 34 on the morning-sun side of the canopy. During grape maturation, UV radiations were either reduced by 99% by installing UV radiation-shielding sheets, or applied four times using the Boxilumix™ non thermal device (Asclepios Tech, Tournefeuille) with the aim of activating plant signalling pathway. Loggers displayed in solar radiation shields were used to assess the effect of such shielding sheets on air temperature within the bunch zone. The composition of grapes subjected to these treatments will be soon analysed for their rotundone content and basic classical laboratory analyses. Grapes will be harvested to elaborate wines under standardized small-scale vinification conditions (60kg) that will be assessed by a trained sensory panel.

Relevance of an immunoassay test for rapid detection of Botrytis cinerea in ‘Ugni blanc’ musts and wines

A new immunoassay kit, called Botrytis Lateral Flow Device has been tested to detect Botrytis cinerea on musts and wines. The comparison of the immunoassay result with the quantitative analysis of usual markers (gluconic acid, sugars and polyols) showed the relevance of this innovative tool.

From varietal and terroir expression to off-odors: chemical background of wine aroma evolution during aging

Expression of sensory attributes that reflect the varietal and geographical origin of wines (aka terroir) is central to perceived wine quality and reputation of wine producing regions.

Flavonol and anthocyanin potential of Spanish minority grapes and its relationship with wine colour

Global climate change is currently affecting vine phenology and causing a decoupling between technological and phenolic maturity of the grapes [1]. Wine industry has to face the challenge of making quality wines from grapes with an unbalanced phenolic composition.