Terroir 2008 banner
IVES 9 IVES Conference Series 9 Enological potential of red grapes: cultivars and geographic origin of vineyards

Enological potential of red grapes: cultivars and geographic origin of vineyards


The study of technologic and phenolic maturation is very efficient to determinate quality potential of red grapes cultivars and clones under different maturity levels or geographic origins. This study was made in order to evaluate the enologic potential of the grape cultivars from the six Brazilian viticultural regions: Planalto Catarinense – Santa Catarina State (28°18’S – 49°56’W – altitude between 900 and 1400m); Planalto de Palmas – Santa Catarina State (27°00’S – 52°00’W – altitude between 1200 and 1400m); Campos de Cima da Serra – Rio Grande do Sul State (28°33’S – 50°42’W – altitude between 900 and 1100m); Serra Gaúcha – Rio Grande do Sul State (29°10’S – 51°32’W – altitude between 450 and 700m); Serra do Sudeste – Rio Grande do Sul State (30°33’S – 52°31’W – altitude between 350 and 450m); Campanha Meridional – Rio Grande do Sul State (30°53’S – 55°32’W – altitude between 200 and 350m). The variables analyzed from the grapes were: in the whole grapes: physic analysis (grape weight; % of skins, seeds and meet in relation to total weight; seeds number and % of juice). In the juice: levels of sugars, organic acids and pH. In the skins and seeds: levels and stractibility of anthocyans and tannins of skins, levels of seed tannins, total polyphénols, total tannins and skin tannins/seed tannins ratio. The totality of results makes the technologic and phenolic profile of the grapes at maturity and made possible put and discriminate one cultivar in relation to geographic origin and different cultivars into the particular region. The most significant differences concerning enological potential of cultivars and regions were observed for sugar levels, titrable acidity, total anthocyanins and total polyphénols.


Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article



Embrapa, Centre National de Recherche de la Vigne et du Vin, B.P. 130, C.P. 95.700-000, Bento Gonçalves, RS, Brésil

Contact the author


 Maturation, raisins noirs, cépages, régions, origine géographique 


IVES Conference Series | Terroir 2008


Related articles…

The environmental footprint of selected vineyard management practices: A case study from Logroño (La Rioja) Spain

Viticulture is globally important for socioeconomic and environmental reasons. The EU is globally leading grape and wine production, and Spain is among the top grape and wine producers. As climate change affects viticulture, mitigation and adaptation are crucial for protecting grape production. In this research work, data on viticultural management practices such as soil cultivation, irrigation, energy, machinery, plant protection and the use of fertilizers from vineyards located in Logroño (La Rioja) have been obtained.

Preliminary results of the effect of post veraison pre-pruning on grape and wine composition in Tannat and Merlot

The seasonal’s climatic conditions determine the composition of grapes at harvest as they affect the vine’s physiology and development. High temperatures during the grape ripening period cause a high accumulation of sugars and degradation of fruit acidity ,and alter the synthesis of polyphenols. Therefore, some vineyard management can be applied in order to modify grapevine impact on climate variability. One example is the pre-pruning at the beginning of grape ripening, which can delay the ripening period and modify the composition of the grapes at harvest. This work aims to evaluate the pre-pruning field technique on yield components and alcohol content in wines of Tannat and Merlot varieties.

Pre-breeding for developing heat stress resilient grape varieties to ensure yield 

Climate change has numerous detrimental consequences and creates new challenges for viticulture around the world. Transitory or constant high temperatures frequently associated with an excess of sunlight (UV) can cause a variety of physiological disorders, such as sunburn. Diverse environmental factors and the plant’s response mechanisms to stress determine the symptoms. Grapevine berry sunburn leads to a drastic reduction in yield, and may eventually decline berry quality. Consequently, this poses a significant risk to the winegrowers.


Mycobiota encountered from vine to wine is a complex and diversified ecosystem that may impact grape quality at harvest and the sensorial properties of wines, thus leading to off-flavors [1-3]. Among known off-flavors in wine, fresh mushroom aroma (FMA) has been linked to some mold species, naturally pre-sent on grapes, producing specific volatile organic compounds (VOC) [4-5]. The most well-known are 1-octen-3-ol and 1-octen-3-one, although many other VOC are likely involved. To better understand the FMA defect, biotic and abiotic factors impacting growth kinetics and VOC production of selected fungal species in must media and on grapes were studied.

Exploring intra-vineyard variability with sensor- and molecular-based approaches 

The application of remote and proximal sensing is a fast and efficient method to monitor grapevine vegetative and physiological parameters and is considered valuable to derive information on associated yield and quality traits in the vineyard. Further details can be obtained by the application of molecular analysis at the gene expression level aiming at elucidating how pathways controlling the formation of different grape quality traits are influenced by spatial variability. This work aims at evaluating intra-vineyard variability in grape composition at harvest and at comparing this with remotely sensed canopy vegetation data and molecular-based approaches.