Terroir 2008 banner
IVES 9 IVES Conference Series 9 Impact of water stress on the phenolic composition of cv. Merlot grapes, in a typical terroir of the La Mancha region (Spain)

Impact of water stress on the phenolic composition of cv. Merlot grapes, in a typical terroir of the La Mancha region (Spain)

Abstract

The study was carried out in 2006 with Merlot grapes from vines grown using the trellis system, where four treatments were compared with different levels of water stress. These levels were established using irrigation to maintain pre-dawn leaf water potential (ΨPD) values between two different phenological intervals: flowering-veraison and veraison-maturity. Leaf area index (LAI), exposed leaf area (SA) and production were also measured. Conventional grape parameters (weight, ºBaumé, pH and malic acid) and seed and skin phenolic compounds (anthocyanins, procyanidins, tannins and total polyphenols) were also analyzed. The results showed that when grape weight diminished as a result of water stress, the percentage weight of grape skins with respect to total grape weight was maintained, but seed weight increased. When the water stress integral increased, total polyphenol, procyanidin and tannin concentrations in the seeds also increased.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Juan Luis CHACÓN VOZMEDIANO, Esteban GARCÍA ROMERO, Jesús MARTÍNEZ GASCUEÑA, Raquel ROMERO PECES and Sergio GÓMEZ ALONSO

Servicio de Investigación y Tecnología. Instituto de la Vid y del Vino de Castilla-La Mancha
(IVICAM). Carretera de Albacete, s/n. 13700 Tomelloso, Spain

Contact the author

Keywords

grape, Merlot, phenolic compounds, water stress

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Soil electrical resistivity, a new and revealing technique for precision viticulture

High resolution spatial information of soil electrical resistivity (ER) was gathered to assess the spatial variability patterns of vegetative growth of two commercial vineyards (Vitis vinifera L. cv.

Physiological response of new cultivars resistant to fungi confronted to drought in a semi-arid Mediterranean area

Water is one of the most limiting factors for viticulture in Mediterranean regions. Former researches showed that water shortage hampers both vegetative and reproductive developments. INRA is running programs to breed varieties carrying QTL of tolerance to major fungi, i.e. powdery and downy mildews. Some varieties have been already certified or are close to be certified. However, little is known about the response of these varieties to water deficit, which behavior is critical for their development. This study characterized physiological responses of 4 new varieties to water deficit and described relationship between them.

Soil survey and chemical parameters evaluation in viticultural zoning

The most recent methodological developments in soil survey and land evaluation, that can be taken as reference in the viticultural field, go over usage of the GIS and database. These informatic tools, which begin to be widely utilised, consent to realise evaluations at different geographic scale and with different data quality and quantity in entrance.

Effect of ozone application for low-input postharvest dehydration of wine grapes 

The postharvest dehydration of grapes is a traditional practice to obtain wines with unique traits (e.g. sweet, dry/reinforced). The modern facilities (dehydrating rooms) used for this purpose are equipped with systems for artificially controlling the inside environment parameters, to obtain the desired dehydration kinetic and preserve the grapes from grey mold (Botrytis cinerea) infection, However, the conditioning systems are extremely energy-demanding and the identification and practical applications of solutions effective in controlling/reducing the postharvest decay would reduce the costs of the operation of the dehydration facilities. To this end, we explored the potential of ozone-based treatments on harvested grapes and preliminarily tested if the treatment could impact the normal behavior and metabolism of grapes during the traditionally slow dehydration practice.

Monitoring vineyard canopy structure by aerial and ground-based RGB and multispectral imagery analysis

Unmanned Aerial Vehicles (UAVs) are increasingly used to monitor canopy structure and vineyard performance. Compared with traditional remote sensing platforms (e.g. aircraft and satellite), UAVs offer a higher operational flexibility and can acquire ultra-high resolution images in formats such as true color red, green and blue (RGB) and multispectral. Using photogrammetry, 3D vineyard models and normalized difference vegetation index (NDVI) maps can be created from UAV images and used to study the structure and health of grapevine canopies. However, there is a lack of comparison between UAV-based images and ground-based measurements, such as leaf area index (LAI) and canopy porosity.