Terroir 2008 banner
IVES 9 IVES Conference Series 9 Impact of water stress on the phenolic composition of cv. Merlot grapes, in a typical terroir of the La Mancha region (Spain)

Impact of water stress on the phenolic composition of cv. Merlot grapes, in a typical terroir of the La Mancha region (Spain)

Abstract

The study was carried out in 2006 with Merlot grapes from vines grown using the trellis system, where four treatments were compared with different levels of water stress. These levels were established using irrigation to maintain pre-dawn leaf water potential (ΨPD) values between two different phenological intervals: flowering-veraison and veraison-maturity. Leaf area index (LAI), exposed leaf area (SA) and production were also measured. Conventional grape parameters (weight, ºBaumé, pH and malic acid) and seed and skin phenolic compounds (anthocyanins, procyanidins, tannins and total polyphenols) were also analyzed. The results showed that when grape weight diminished as a result of water stress, the percentage weight of grape skins with respect to total grape weight was maintained, but seed weight increased. When the water stress integral increased, total polyphenol, procyanidin and tannin concentrations in the seeds also increased.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Juan Luis CHACÓN VOZMEDIANO, Esteban GARCÍA ROMERO, Jesús MARTÍNEZ GASCUEÑA, Raquel ROMERO PECES and Sergio GÓMEZ ALONSO

Servicio de Investigación y Tecnología. Instituto de la Vid y del Vino de Castilla-La Mancha
(IVICAM). Carretera de Albacete, s/n. 13700 Tomelloso, Spain

Contact the author

Keywords

grape, Merlot, phenolic compounds, water stress

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

The role of œnology in the enhancement of terroir expression

The reality of terroir is reflected by the typicality that it confers on the wine. The relationship between the origin of wine and its quality did already exist before the appearance of œnological science. Producers and merchants have always tried to improve wine quality in order to satisfy their clients.

Crafting wine’s signature: exploring volatile compounds from terroir to aging

The unique characteristics of terroir play a fundamental role in shaping the identity and quality of wines, influencing the aromatic complexity of young wines and their long-term aging potential. The volatile compounds responsible for these aromas are crucial to identifying and appreciating a given wine.

Application of cyclic voltammetry to the classification of enological tannins in relationship to oxygen consumption rate and botanical origin 

Enological tannins are a diversified group of winemaking products that vary in several aspects such as chemical composition, botanical origin, and production method. In consideration of their richness in phenolic compounds, one of their main application in vinification is related to their antioxidant capacity, in particular their ability to consume oxygen during red wine maturation.

Chemical affinity and binding capacity between pre-purified Cabernet-Sauvignon/Merlot anthocyanins and salivary proteins monitored by UHPLC Q-ToF MS analysis

Apart from pro(antho)cyanidins and tannins, other phenolic compounds in wine or grapes have been shown to interact with salivary proteins and may contribute to overall sensory in-mouth sensations [1, 2]. Anthocyanins are the dominant phenolics in red wine and grape skin [3] , so it is expected that they come into contact and interact with salivary proteins after ingestion.

Understanding the physiological responses of Sauvignon blanc vines to sequential extreme weather events: implications for vineyard management in a changing climate

Climate plays a predominant role in vines’ growth and productivity and several environmental variables are already known to pose challenges to grapevine production and the horticultural industry as a whole. In this context, a number of extreme weather events already occurring and expected to occur in the next decades even more frequently and with higher magnitude results from current climate change scenario. The aim of this study was to examine the physiological responses of roots, leaves, and berries of Vitis vinifera cv. Sauvignon blanc to consecutive and combined stressors simulated in a semi-controlled environment.