Terroir 2008 banner
IVES 9 IVES Conference Series 9 Impact of water stress on the phenolic composition of cv. Merlot grapes, in a typical terroir of the La Mancha region (Spain)

Impact of water stress on the phenolic composition of cv. Merlot grapes, in a typical terroir of the La Mancha region (Spain)

Abstract

The study was carried out in 2006 with Merlot grapes from vines grown using the trellis system, where four treatments were compared with different levels of water stress. These levels were established using irrigation to maintain pre-dawn leaf water potential (ΨPD) values between two different phenological intervals: flowering-veraison and veraison-maturity. Leaf area index (LAI), exposed leaf area (SA) and production were also measured. Conventional grape parameters (weight, ºBaumé, pH and malic acid) and seed and skin phenolic compounds (anthocyanins, procyanidins, tannins and total polyphenols) were also analyzed. The results showed that when grape weight diminished as a result of water stress, the percentage weight of grape skins with respect to total grape weight was maintained, but seed weight increased. When the water stress integral increased, total polyphenol, procyanidin and tannin concentrations in the seeds also increased.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Juan Luis CHACÓN VOZMEDIANO, Esteban GARCÍA ROMERO, Jesús MARTÍNEZ GASCUEÑA, Raquel ROMERO PECES and Sergio GÓMEZ ALONSO

Servicio de Investigación y Tecnología. Instituto de la Vid y del Vino de Castilla-La Mancha
(IVICAM). Carretera de Albacete, s/n. 13700 Tomelloso, Spain

Contact the author

Keywords

grape, Merlot, phenolic compounds, water stress

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Ultra-High Pressure Homogenization (UHPH): a technique that allows the reduction of SO2 in winemaking

Ultra-High Pressure Homogenization (UHPH) is an innovative, efficient and non-thermal technology that can be applied at different stages in winemaking in order to reduce or avoid the use of sulphites. During 2022 vintage, a batch of Xarel·lo must was processed by UHPH at 300 MPa with an inlet temperature (Ti) of 4 ºC. In order to verify the influence of the UHPH treatment in wine characteristics, alcoholic fermentations with this must (UHPH) were carried out and compared with a control batch (without SO2 addition (C)) and a sulphited batch, in which 60 mg/L of total SO2 (SO2) were added.

Impact of Ecklonia maxima seaweed extract on the vegetative, reproductive and microbiome in Vitis vinifera L. cv Cabernet-Sauvignon

Context and purpose of the study. Climate change is a major challenge in wine production. It results in erratic weather conditions which may lead to a reduction in grape yield and the subsequent grape and wine quality.

Assessing the feasibility of direct injection for pesticide residue analysis in grape juice by liquid chromatography/triple quadrupole mass spectrometry

In Brazil, the regulation of pesticide residues is guided by the National Health Surveillance Agency (ANVISA) and the Ministry of Agriculture and Livestock (MAPA), emphasizing the importance of monitoring pesticide levels in agricultural products to protect consumer health.

Nivel de infección y saneamiento del virus del entrenudo corto (GFLV) en el cv. de vid Pedro Ximenez en la denominación de origen Montilla-Moriles (DOMM)

Mediante análisis por test ELISA de hojas de vides (Vitis vinifera L.) del cv. Pedro Ximénez, procedentes de 28 parcelas experimentales distribuidas por la DOMM

Dispersive liquid-liquid microextraction for the quantification of terpens in wines

In a highly competitive worldwide market, a current challenge for the beverage sector is to diversify the range of products and to offer wines and spirits with typicity and character.

During alcoholic fermentation, wine yeasts generate a large variety of volatile metabolites, including acetate esters, ethyl fatty acid esters, higher alcohols, volatile fatty acids and volatile sulfur compounds that contribute to the aroma profile of wine. These molecules, refered as fermentative aromas, are the most abundant volatile compounds synthetized by yeasts and the metabolic pathways involved in their formation have been well characterized. Furthermore, other molecules with a major organoleptic impact may be produced during wine fermentation including terpene derivatives. However, little information is available on the contribution of yeasts to the formation of these molecules, in particular on their ability to synthethise de novo the terpens derivatives or to produce hydrolytic enzymes involved in the release of varietal precursors.