Terroir 2008 banner
IVES 9 IVES Conference Series 9 Impact of water stress on the phenolic composition of cv. Merlot grapes, in a typical terroir of the La Mancha region (Spain)

Impact of water stress on the phenolic composition of cv. Merlot grapes, in a typical terroir of the La Mancha region (Spain)

Abstract

The study was carried out in 2006 with Merlot grapes from vines grown using the trellis system, where four treatments were compared with different levels of water stress. These levels were established using irrigation to maintain pre-dawn leaf water potential (ΨPD) values between two different phenological intervals: flowering-veraison and veraison-maturity. Leaf area index (LAI), exposed leaf area (SA) and production were also measured. Conventional grape parameters (weight, ºBaumé, pH and malic acid) and seed and skin phenolic compounds (anthocyanins, procyanidins, tannins and total polyphenols) were also analyzed. The results showed that when grape weight diminished as a result of water stress, the percentage weight of grape skins with respect to total grape weight was maintained, but seed weight increased. When the water stress integral increased, total polyphenol, procyanidin and tannin concentrations in the seeds also increased.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Juan Luis CHACÓN VOZMEDIANO, Esteban GARCÍA ROMERO, Jesús MARTÍNEZ GASCUEÑA, Raquel ROMERO PECES and Sergio GÓMEZ ALONSO

Servicio de Investigación y Tecnología. Instituto de la Vid y del Vino de Castilla-La Mancha
(IVICAM). Carretera de Albacete, s/n. 13700 Tomelloso, Spain

Contact the author

Keywords

grape, Merlot, phenolic compounds, water stress

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Cascading effects of spring weather conditions into grape berry ripening

The effects of climate change on viticulture are complex due to interactions among factors and cascading effects.

DNA-free editing to improve stress resilience of wine grape genotypes recalcitrant-to-regeneration

Wine viticulture, being firmly linked to the vine-terroir relationship, has always encountered significant bottlenecks to genetic innovation. Nonetheless, the development of new breeding strategies leading to the selection of stress resilient genotypes is urgent, especially in viticulture, where it would allow reducing the use of chemical treatments adopted to control fungal diseases. Genome editing represents an extremely promising breeding technique. Unfortunately, the well-known recalcitrance of several wine grape cultivars to in vitro regeneration strongly limits the exploitation of this approach, which to our knowledge has so far been developed on table grape genotypes with high regeneration potential.

Assessment of antimicrobial effect of chitosan extracted from different sources against unwanted wine microorganisms

During wine production process high attention to the microbiological control from fermentation of the grape must to bottling is necessary. In fact, control of the indigenous microflora of the grape ensures correct fermentation activity of the inoculated starter, while control of the microorganisms in the finished wine is essential to prevent wine spoilage and to ensure the dominance of the desired bacteria when malolactic fermentation is required (Mas and Portillo, 2022).

Study to optimize the effectiveness of copper treatments for low impact viticulture

Among all pathologies that afflict grapevine, Downy Mildew (DM) is the most important. Generally controlled using Copper (Cu), recently European Commission confirmed its usage but limiting the maximum amount to 28 Kg per hectare in 7 years (Reg. EU 2018/1981).

Efficient irrigation strategies and water use reduction in the high quality production regions of Priorat and Montsant (Spain)

Priorat and Montsant Appellations of Origin are located in the south of Catalonia (North‐East Spain), under severe Mediterranean climatic conditions