Terroir 2008 banner
IVES 9 IVES Conference Series 9 «Observatoire Mourvèdre»: (2) climatic mapping for successful plantation of Cv. Mourvèdre

«Observatoire Mourvèdre»: (2) climatic mapping for successful plantation of Cv. Mourvèdre

Abstract

A statistical model of sugar potential for Mourvèdre grapevine cultivar has been obtained using a group of 32 plots all around de south-east french mediterranean area. It is aimed to better understand the relations between viticultural practices and quality. The model shows strong influence of the temperature components on maturity. That is why a mapping valorization has been worked on at the local scale of a small viticultural region (2000 ha) and for the year 2005. The interpolation of temperature data was possible thanks to the MITEF method, which is acurate at a resolution of 50m. Rebuilding phenological stages has been done with a model using temperature summing adapted to Mourvèdre cv.. With moderate level of yield and canopy, the sugar potential for 2005 ranged from 11 to 14 %vol. depending on the location. With a maturity level of 12% vol. given as a minimal, it is thus possible to determine favourable and less favourable areas for the variety. Finally, turning up or down the level of yield or canopy gives us simulations of the impact of the grower practices on maturity potential, leading to an extent or a reduction of the possible planting area.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

CLAVERIE M. (1), SIVADON I. (2), GARCIA DE CORTAZAR-ATAURI I. (3), ICOLE H. (4)

(1) Institut Français de la Vigne et du Vin (ENTAV-ITV France), Station régionale Rhône-Méditerranée, Domaine de Donadille, Rodilhan, France
(2) Centre d’Information Régional Agrométéorologique (CIRAME), 775 chemin de l’Hermitage, Hameau de Serres, Carpentras, France
(3) Equipe Bioflux, CEFE-CNRS, route de Mende, Montpellier, France
(4) Cave coopérative de Cairanne, route de Bollène, Cairanne, France

Contact the author

Keywords

vine, Mourvèdre variety, maturity, zoning, temperature interpolation

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

NEW INSIGHTS INTO THE EFFECT OF TORULASPORA DELBRUECKII/SACCHAROMYCES CEREVISIAE INOCULATION STRATEGY ON MALOLACTIC FERMENTATION PERFORMANCE

Winemaking is influenced by micro-organisms, which are largely responsible for the quality of the product. In this context, Non-Saccharomyces and Saccharomyces species are of great importance not only because it influences the development of alcoholic fermentation (AF) but also on the achievement of malolactic fermentation (MLF). Among these yeasts, Torulaspora delbrueckii allows in sequential inoculation with strains of S. cerevisiae shorter MLF realizations [5] . Little information is available on the temporal effect of the presence of T. delbrueckii on (i) the evolution of AF and (ii) the MLF performance.

Agronomic and qualitative effects of early leaf removal on cv.

Aim: The regulation of the vegetative-reproductive balance of a vineyard is a critical aspect for the quality of grapes. Early leaf removal, generally applied before the phenological stage of flowering, is mainly used as a technique to control yield and improve grape health, aimed at increasing the quality of the wine.

Chemical characterization of distinctive aroma profiles of Valpolicella and Amarone wines

Valpolicella is an Italian wine producing region, famous for the production of high-quality red wines. A distinctive characteristic of this region is the extensive use of post-harvest withering.

Monitoring of mannoprotein cessions during wine aging on lees: development of a simple enzymatic method

Mannoproteins are polysaccharides released by Saccharomyces cerevisiae yeast during alcoholic fermentation or by enzymatic action during aging on yeast lees (autolysis). These molecules play a major role in wine characteristics processing, namely, in the tartaric stabilization and protein haze prevention; moreover, they improve color stability and reduce astringency.

Litchi tomato as a fumigation alternative in Washington state wine grape vineyards

The northern root-knot nematode (Meloidogyne hapla) is one of the most prevalent plant-parasitic nematodes affecting Washington State Vitis vinifera vineyards. This nematode induces small galls on roots, restricting water and nutrient uptake. In new vineyards this can impede establishment. In existing vineyards, it can exacerbate decline in chronically stressed vines. While preplant fumigation is a common strategy for M. hapla management, its efficacy is temporary and relies on broad-spectrum chemicals that undergo frequent regulatory scrutiny. The trap crop litchi tomato (Solanum sisymbriifolium) showed promise in reducing plant-parasitic nematode densities in potato. This prompted field greenhouse experiments to evaluate its potential to reduce M. hapla in V. vinifera.