Terroir 2008 banner
IVES 9 IVES Conference Series 9 «Observatoire Mourvèdre»: (2) climatic mapping for successful plantation of Cv. Mourvèdre

«Observatoire Mourvèdre»: (2) climatic mapping for successful plantation of Cv. Mourvèdre

Abstract

A statistical model of sugar potential for Mourvèdre grapevine cultivar has been obtained using a group of 32 plots all around de south-east french mediterranean area. It is aimed to better understand the relations between viticultural practices and quality. The model shows strong influence of the temperature components on maturity. That is why a mapping valorization has been worked on at the local scale of a small viticultural region (2000 ha) and for the year 2005. The interpolation of temperature data was possible thanks to the MITEF method, which is acurate at a resolution of 50m. Rebuilding phenological stages has been done with a model using temperature summing adapted to Mourvèdre cv.. With moderate level of yield and canopy, the sugar potential for 2005 ranged from 11 to 14 %vol. depending on the location. With a maturity level of 12% vol. given as a minimal, it is thus possible to determine favourable and less favourable areas for the variety. Finally, turning up or down the level of yield or canopy gives us simulations of the impact of the grower practices on maturity potential, leading to an extent or a reduction of the possible planting area.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

CLAVERIE M. (1), SIVADON I. (2), GARCIA DE CORTAZAR-ATAURI I. (3), ICOLE H. (4)

(1) Institut Français de la Vigne et du Vin (ENTAV-ITV France), Station régionale Rhône-Méditerranée, Domaine de Donadille, Rodilhan, France
(2) Centre d’Information Régional Agrométéorologique (CIRAME), 775 chemin de l’Hermitage, Hameau de Serres, Carpentras, France
(3) Equipe Bioflux, CEFE-CNRS, route de Mende, Montpellier, France
(4) Cave coopérative de Cairanne, route de Bollène, Cairanne, France

Contact the author

Keywords

vine, Mourvèdre variety, maturity, zoning, temperature interpolation

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Agroclimatic characterization of Monreale DOC appellation for vine growing

This paper presents the results of an agroclimatic study of the viticulture area called DOC Monreale (Pa), Italy, which was carried out with the aim to supply a working instrument supporting viticulture planning.

Effect of elicitors and ripening moment on the phenolic composition of Monastrell

Grapevine (Vitis vinifera L.) is a globally cultivated crop and economically significant, particularly in the wine industry (Varela et al., 2024). Climate change is already affecting vineyards and is expected to worsen (Averbeck et al., 2019; Dupuis and Knoepfel, 2011).

First results obtained with a terrain model to characterize the viticultural «terroirs» in Anjou (France)

En Anjou, une méthode de caractérisation des terroirs viticoles a été développée. Elle utilise un modèle de terrain basé sur la profondeur de sol et son degré d’argilisation.

Terroir and sustainability: an analysis of brazilian vineyards from a territorial perspective

In the concept of sustainable viticulture proposed by the OIV, it can be noted that enhancing terroir is also one measure of sustainability. Thus, the territorial approach may offer an interesting viewpoint from which to consider this issue in a multi-perspective way.

Regenerative agricultural approaches to improve ecosystem services in Mediterranean vineyards

REVINE is a 3 year European projected funded by PRIMA programme which proposes the adoption of regenerative agriculture practices with an innovative and original perspective, in order to improve the resilience of vineyards to climate change in the Mediterranean area. The potential for innovation lies in developing and combining new approaches that make agriculture more environmentally sustainable and enable a circular economy capable of improving farmers’ incomes. Primarily REVINE aims to improve soil health and biodiversity by promoting the multiplication of soil saprophytic microorganisms and the presence of useful microorganisms linked to the life cycle of the plant, such as rhizobacteria (PGPR) and fungi (PGPF) that promote plant growth which, in addition to increasing plant performance, increase tolerance to biotic and abiotic stresses.