Terroir 2008 banner
IVES 9 IVES Conference Series 9 Prospects for enlarging of microzone Manavi in the East Georgia

Prospects for enlarging of microzone Manavi in the East Georgia

Abstract

The experimental studies conducted in the eastern Georgia in Sagarejo administrative district on the foothills of the southern slope of Tsiv-Gombori range reveal the possibility of enlarging Manavi traditional specific zone to the north-west (from Giorgitsminda to Khashmi), at 500-750 m above sea level. Transitional climate from dry subtropical to moderately humid, relief, black cinnamonic soils, distinguished quantitative indices of the Kahuri Mtsvane grape cultivar provide the best conditions for production of European type wine – Manavi source region. The wine has light-straw color, greenish tint, soft taste, harmonious, exquisite, with fruit aroma and developed bouquet.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Dr. Maya Mirvrelashvili, Dr. Tamaz Kobaidze, Dr. Temur Dekanosidze, Dr. Vazha Gogotidze

Georgian Research Institute of Horticulture, Viticulture and Winemaking, №6 Marshal Gelovani ave. Georgia, Tbilisi

Contact the author

Keywords

Kakhuri Mtsvane, wine Manavi, micro climate, landscape, microzone

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Climate change impact study based on grapevine phenology modelling

In this work we present a joint model of calculation the budbreak and full bloom starting dates which considers the heat sums and allows reliable estimations for five white wine grape varieties

Iso-/anisohydric behavior in wine grapes may be a matter of soil moisture

There are claims that wine grape cultivars are either isohydric or anisohydric; the former maintaining, and the latter decreasing, their plant water status as soil moisture declines. However, available information is inconsistent. There are those that show an existence of a continuum in cultivar response to soil moisture rather than a distinct categorization. Others even show both behaviors in the same cultivar grown in different environments. In this study we investigated the behavior of 30 own rooted Vitis vinifera cultivars during successive drydown and rewatering cycles over two growing seasons in arid eastern Washington (<200 mm annual precipitation).

Measurement of redox potential as a new analytical winegrowing tool

Excell laboratory has initiated the development of an analytical method based on electrochemistry to evaluate the ability of wines to undergo or resist to oxidative phenomena. Electrochemistry is a powerful tool to probe reactions involving electron transfers and offers possibility of real-time measurements. In that context, the laboratory has implemented electrochemical analysis to assess oxidation state of different wine matrices but also in order to evaluate oxidative or reduced character of leaf and soil. Initially, our laboratory focused on dosage of compounds involved in responses of plant stresses and we were also interested in microbiological activity of soils. These analyses were compared with the measurement of redox potential (Eh) and pH which are two fundamental variables involved in the modulation of plant metabolism. Indeed, the variation of redox states of the plant reflects its biological activity but also its capacity to absorb nutriments. The Eh-pH conditions mainly determine metabolic processes involved in soil and leaf and our goal is to determine if this combined analytical approach will be sufficiently precise to detect biological evolutions (plant health, parasitic attack…).

Characterization of four Chenin Blanc-rootstock combinations to assess grapevine adaptability to water constraint

Climate change impacts water availability for agriculture, notably in semi-arid regions like South Africa, necessitating research on cultivar and rootstock adaptability to water constraints. To evaluate the performance (vegetative and reproductive) of different Chenin Blanc-rootstock combinations to the two water regimes, a field experiment was established in a model vineyard at Stellenbosch University, South Africa. Chenin Blanc vines grafted onto four different rootstocks (110Richter, 99Richter, 1103Paulsen and US 8-7) were planted in 2020. The vines are managed under two contrasting water conditions – dryland and irrigated (industry norm).

Interaction Between Armenian Clay-based Ceramic and Model Wine

Clay-based ceramic vessels (jars, pyhtoi, etc.) for wine fermentation and aging processes have been used in several cultures for millennia. This know-how still in practice in several countries of the Armenian highland is gaining worldwide in curiosity, popularity, and interest. Ceramic pots are famous among traditional winemakers for their benefits such as temperature regulation, natural cooling system, favorable oxygen exchange, and impact on pH, which are different from those of stainless steel, wood barrels, or concrete.