Terroir 2008 banner
IVES 9 IVES Conference Series 9 Ripening potential of Touriga Nacional variety with different canopy management techniques and in different regions (Dão, Bairrada and Vinhos Verdes)

Ripening potential of Touriga Nacional variety with different canopy management techniques and in different regions (Dão, Bairrada and Vinhos Verdes)

Abstract

Foreseeing climatic changes, the abnormally hot and dry year of 2005 can be revealer of some varieties behavior in different climatic conditions. In three experiments, done in private companies, (Dão Sul, Caves Messias and Quinta de Lourosa), the behavior of ‘Touriga Nacional’ vine variety, with different technological itineraries, was studied.
In Dão, it was evaluated the influence of shoot density (23, 17 and 11 for linear meter of canopy) and qualitative cluster thinning at veraison. In Bairrada, the traditional vine trellising has been compared with the Lys system. In both conduction systems has been evaluated the influence of qualitative cluster thinning at veraison. In Vinhos Verdes, in the system LYS 2/3, has been studied the effect of shoot density (29 and 20 for linear meter of canopy) and leaf removal associated to qualitative cluster thinning at veraison.
In these three regions, two of them that are not traditional places for this variety, the ‘Touriga Nacional’ reached high levels of yield and quality, in adjusted technological itineraries. Cluster thinning reduced yield in all cases, as it was expectable, with gains of PAC only in Bairrada. In a general way, different levels of canopy management (leaf removal and shoot suppression) didn’t play an important role. In Dão, the greatest shoot density originated a higher yield, without quality decrease.
In these three regions, two of which not traditional of this chaste one, the Touriga Nacional disclosed high levels of
In a global way, the ‘Touriga Nacional’ vine variety demonstrated high potentials of yield and maturation, in all regions. But in situations of high hydric stress, as verified in Bairrada, the reduction of production lead to significant improvements of quality.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type: Article

Authors

Rogério de CASTRO, Manuel BOTELHO, Amândio CRUZ

Instituto Superior de Agronomia – Viticultura

Contact the author

Keywords

Vinhos Verdes, Dão, Bairrada, Touriga Nacional, LYS

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Soil survey and chemical parameters evaluation in viticultural zoning

The most recent methodological developments in soil survey and land evaluation, that can be taken as reference in the viticultural field, go over usage of the GIS and database. These informatic tools, which begin to be widely utilised, consent to realise evaluations at different geographic scale and with different data quality and quantity in entrance.

Drought tolerance of varieties in semi-arid areas: can the behavior of Tempranillo be improved by varieties of its own lineage?

Tempranillo is the most widely grown red grapevine variety in Spain, currently representing 42% of the total number of red varieties and 21% of the total vineyard area. Due to the economic importance that this variety represents in Spanish viticulture, in some areas where it is traditionally grown, there is a special concern about the viability of the future growing of this variety is being compromised by the climate change effects.

Effect of the addition of peptidic hydrolysates from grape pomace by-products to red wines in warm regions

High temperatures typical of warm climates cause the colour of red wines to become increasingly unstable over time.

A look back at 20 years of exploring the future of the vines and wines sector

What if, in 25 years, most wines were dealcoholized and flavored ? What if vines were only cultivated to combat erosion, store carbon, and provide anthocyanins…? What if climate change completely changed the list of vine varieties cultivable for wine production in France? What if food stores had completely disappeared in favor of virtual platforms? And if… because the long-term future is not predetermined and therefore not knowable, because the future is open to several possibilities, because the future does not emerge from nothing but from the present which conceals heavy trends and weak signals, prospective approaches make it possible to consider the room for maneuver that actors have to promote the advent of a future, which we can hope to be chosen, at least in part.

Genotypic variability in root architectural traits and putative implications for water uptake in grafted grapevine

Root system architecture (RSA) is important for soil exploration and edaphic resources acquisition by the plant, and thus contributes largely to its productivity and adaptation to environmental stresses, particularly soil water deficit. In grafted grapevine, while the degree of drought tolerance induced by the rootstock has been well documented in the vineyard, information about the underlying physiological processes, particularly at the root level, is scarce, due to the inherent difficulties in observing large root systems in situ. The objectives of this study were to determine genetic differences in the root architectural traits and their relationships to water uptake in two Vitis rootstocks genotypes (RGM, 140Ru) differing in their adaptation to drought. Young rootstocks grafted upon the Riesling variety were transplanted into cylindrical tubes and in 2D rhizotrons under two conditions, well watered and moderate water stress. Root traits were analyzed by digital imaging and the amount of transpired water was measured gravimetrically twice a week. Root phenotyping after 30 days reveal substantial variation in RSA traits between genotypes despite similar total root mass; the drought-tolerant 140Ru showed higher root length density in the deep layer, while the drought-sensitive RGM was characterised by shallow-angled root system development with more basal roots and a larger proportion of fine roots in the upper half of the tube. Water deficit affected canopy size and shoot mass to a greater extent than root development and architectural-related traits for both 140Ru and RGM, suggesting vertical distribution of roots was controlled by genotype rather than plasticity to soil water regime. The deeper root system of 140Ru as compared to RGM correlated with greater daily water uptake and sustained stomata opening under water-limited conditions but had little effect on above-ground growth. Our results highlight that grapevine rootstocks have constitutively distinct RSA phenotypes and that, in the context of climate change, those that develop an extensive root network at depth may provide a desirable advantage to the plant in coping with reduced water resources.