Terroir 2008 banner
IVES 9 IVES Conference Series 9 Ripening potential of Touriga Nacional variety with different canopy management techniques and in different regions (Dão, Bairrada and Vinhos Verdes)

Ripening potential of Touriga Nacional variety with different canopy management techniques and in different regions (Dão, Bairrada and Vinhos Verdes)

Abstract

Foreseeing climatic changes, the abnormally hot and dry year of 2005 can be revealer of some varieties behavior in different climatic conditions. In three experiments, done in private companies, (Dão Sul, Caves Messias and Quinta de Lourosa), the behavior of ‘Touriga Nacional’ vine variety, with different technological itineraries, was studied.
In Dão, it was evaluated the influence of shoot density (23, 17 and 11 for linear meter of canopy) and qualitative cluster thinning at veraison. In Bairrada, the traditional vine trellising has been compared with the Lys system. In both conduction systems has been evaluated the influence of qualitative cluster thinning at veraison. In Vinhos Verdes, in the system LYS 2/3, has been studied the effect of shoot density (29 and 20 for linear meter of canopy) and leaf removal associated to qualitative cluster thinning at veraison.
In these three regions, two of them that are not traditional places for this variety, the ‘Touriga Nacional’ reached high levels of yield and quality, in adjusted technological itineraries. Cluster thinning reduced yield in all cases, as it was expectable, with gains of PAC only in Bairrada. In a general way, different levels of canopy management (leaf removal and shoot suppression) didn’t play an important role. In Dão, the greatest shoot density originated a higher yield, without quality decrease.
In these three regions, two of which not traditional of this chaste one, the Touriga Nacional disclosed high levels of
In a global way, the ‘Touriga Nacional’ vine variety demonstrated high potentials of yield and maturation, in all regions. But in situations of high hydric stress, as verified in Bairrada, the reduction of production lead to significant improvements of quality.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type: Article

Authors

Rogério de CASTRO, Manuel BOTELHO, Amândio CRUZ

Instituto Superior de Agronomia – Viticultura

Contact the author

Keywords

Vinhos Verdes, Dão, Bairrada, Touriga Nacional, LYS

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Innovative approaches for fungicide resistance monitoring in precision management of grapevine downy mildew

Effective control with fungicides is essential to protect grapevine from downy mildew, a devastating disease caused by the oomycete Plasmopara viticola. Managing this disease faces challenges in maintaining fungicide efficacy as the number of modes of action decreases and the risk of fungicide resistance increases. Long-term measures should address strains resistant to multiple modes of action, that can be selected by the repeated use of single-site fungicides. For these reasons, a precision management of the disease, that considers the selection of the best fungicide schedule according to the sensitivity profile of the pathogen population, is needed.

Permanent cover cropping with reduced tillage increased resiliency of wine grape vineyards to climate change

Majority of California’s vineyards rely on supplemental irrigation to overcome abiotic stressors. In the context of climate change, increases in growing season temperatures and crop evapotranspiration pose a risk to adaptation of viticulture to climate change. Vineyard cover crops may mitigate soil erosion and preserve water resources; but there is a lack of information on how they contribute to vineyard resiliency under tillage systems. The aim of this study was to identify the optimum combination of cover crop sand tillage without adversely affecting productivity while preserving plant water status. Two experiments in two contrasting climatic regions were conducted with two cover crops, including a permanent short stature grass (P. bulbosa hybrid), barley (Hordeum spp), and resident vegetation under till vs. no-till systems in a Ruby Cabernet (V. vinifera spp.) (Fresno) and a Cabernet Sauvingon (Napa) vineyard. Results indicated that permanent grass under no-till preserved plant available water until E-L stage 17. Consequently, net carbon assimilation of the permanent grass under no-till system was enhanced compared to those with barley and resident vegetation. On the other hand, the barley under no-till system reduced grapevine net carbon assimilation during berry ripening that led to lower content of nonstructural carbohydrates in shoots at dormancy. Components of yield and berry composition including flavonoid profile at either site were not adversely affected by factors studied. Switching to a permanent cover crop under a no-till system also provided a 9% and 3% benefit in cultural practices costs in Fresno and Napa, respectively. The results of this work provides fundamental information to growers in preserving resiliency of vineyard systems in hot and warm climate regions under context of climate change.

The influence of climate on the grapevine phenology and content of sugar and total acids in the must

For the period of 10 years in the condition of Skopje vineyard area, at two regional (Vranec and Smederevka) and two international (Cabernet sauvignon and Chardonnay) grapevine cultivars, the researches are done.

Is your juice truly organic? An isotopic approach for certifying organic grape juice

The sustainability and authenticity of grape juice production have gained increasing attention, particularly regarding the environmental impact and health benefits of organic practices.

From genes to vineyards: system biology and new breeding technologies for water stress tolerance in grapevines

One of the major challenges for food security and sovereignty is to produce stress-tolerant plants without introducing foreign DNA, because the legislative process, that bans transgenics, challenges us to find new solutions for producing plants that can survive the drought. To achieve this goal, we need to identify genes that can be modified to improve stress tolerance in plants. In this work, we present an online tool for exploring the transcriptome of grapevines under water stress, which is one of the most important abiotic stresses affecting viticulture. The tool is based on a comprehensive collection of rna-seq data from 997 experiments, covering four different tissues (leaf, root, berry, and shoot), various levels of water stress, and diverse genetic backgrounds (cultivars and rootstocks) with different levels of tolerance to water stress.