Terroir 2008 banner
IVES 9 IVES Conference Series 9 Ripening potential of Touriga Nacional variety with different canopy management techniques and in different regions (Dão, Bairrada and Vinhos Verdes)

Ripening potential of Touriga Nacional variety with different canopy management techniques and in different regions (Dão, Bairrada and Vinhos Verdes)

Abstract

Foreseeing climatic changes, the abnormally hot and dry year of 2005 can be revealer of some varieties behavior in different climatic conditions. In three experiments, done in private companies, (Dão Sul, Caves Messias and Quinta de Lourosa), the behavior of ‘Touriga Nacional’ vine variety, with different technological itineraries, was studied.
In Dão, it was evaluated the influence of shoot density (23, 17 and 11 for linear meter of canopy) and qualitative cluster thinning at veraison. In Bairrada, the traditional vine trellising has been compared with the Lys system. In both conduction systems has been evaluated the influence of qualitative cluster thinning at veraison. In Vinhos Verdes, in the system LYS 2/3, has been studied the effect of shoot density (29 and 20 for linear meter of canopy) and leaf removal associated to qualitative cluster thinning at veraison.
In these three regions, two of them that are not traditional places for this variety, the ‘Touriga Nacional’ reached high levels of yield and quality, in adjusted technological itineraries. Cluster thinning reduced yield in all cases, as it was expectable, with gains of PAC only in Bairrada. In a general way, different levels of canopy management (leaf removal and shoot suppression) didn’t play an important role. In Dão, the greatest shoot density originated a higher yield, without quality decrease.
In these three regions, two of which not traditional of this chaste one, the Touriga Nacional disclosed high levels of
In a global way, the ‘Touriga Nacional’ vine variety demonstrated high potentials of yield and maturation, in all regions. But in situations of high hydric stress, as verified in Bairrada, the reduction of production lead to significant improvements of quality.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Rogério de CASTRO, Manuel BOTELHO, Amândio CRUZ

Instituto Superior de Agronomia – Viticultura

Contact the author

Keywords

Vinhos Verdes, Dão, Bairrada, Touriga Nacional, LYS

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Influence of agrophotovoltaic on vine and must in a cool climate

The current energy crisis means that interest in agrophotovoltaics has increased significantly. The reason behind this is that the system aims to combine agricultural production with energy production. During the three-year period from 2020 to 2022, the effects of photovoltaic panels on the vine, the yield and the quality of the must were studied in Walenstadt in northern Switzerland, an area with a cool, humid climate. 65 Pinot noir vines were planted in the 160m2 study area. Because of the large edge effects, only 3 repetitions with 4 vines each could be created. A significantly lower leaf infestation by Plasmopara viticola was observed among the panels in each of the three years.

A 4D high resolution vineyard soil assessment for soil-hydrological interpretation in combination with automated data analysis and visualization to manage site-specific grape and wine quality

A Visual Information eNvironment for Effective agricultural management and Sustainability (VINES) is under development, which can provide significant competitive advantages to winegrowers by sustaining their appellation-specific grape and wine qualities and yields while measurably conserving water resources.

Unraveling the complexity of high-temperature tolerance by characterizing key players of heat stress response in grapevine

Grapevine (Vitis spp.) is greatly influenced by climatic conditions and its economic value is therefore directly linked to environmental factors. Among these factors, temperature plays a critical role in vine phenology and fruit composition. In such conditions, elucidating the mechanisms employed by the vine to cope with heat waves becomes urgent. For the past few years, our research team has been producing molecular and metabolic data to highlight the molecular players involved in the response of the vine and the fruit to high temperatures [1]. Some of these temperature-sensitive genes are currently undergoing characterization using transgenesis approaches coupled or not with genome editing, taking advantage of the Microvine genotype [2].

Volatile fraction of young Cabernet Sauvignon from Santa Catarina State, a new terroir in Brazil

A total of 52 volatile compounds were measured in varietal Cabernet Sauvignon wines from four sites in Santa Catarina State (Brazil), over two consecutive vintages (2004 and 2005).

Adapting the vineyard to climate change in warm climate regions with cultural practices

Since the 1980s global regime shift, grape growers have been steadily adapting to a changing climate. These adaptations have preserved the region-climate-cultivar rapports that have established the global trade of wine with lucrative economic benefits since the middle of 17th century. The advent of using fractions of crop and actual evapotranspiration replacement in vineyards with the use of supplemental irrigation has furthered the adaptation of wine grape cultivation. The shift in trellis systems, as well as pruning methods from positioned shoot systems to sprawling canopies, as well as adapting the bearing surface from head-trained, cane-pruned to cordon-trained, spur-pruned systems have also aided in the adaptation of grapevine to warmer temperatures. In warm climates, the use of shade cloth or over-head shade films not only have aided in arresting the damage of heat waves, but also identified opportunities to reduce the evapotranspiration from vineyards, reducing environmental footprint of vineyard. Our increase in knowledge on how best to understand the response of grapevine to climate change was aided with the identification of solar radiation exposure biomarker that is now used for phenotyping cultivars in their adaptability to harsh environments. Using fruit-based metrics such as sugar-flavonoid relationships were shown to be better indicators of losses in berry integrity associated with a warming climate, rather than solely focusing on region-climate-cultivar rapports. The resilience of wine grape was further enhanced by exploitation of rootstock × scion combinations that can resist untoward droughts and warm temperatures by making more resilient grapevine combinations. Our understanding of soil-plant-atmosphere continuum in the vineyard has increased within the last 50 years in such a manner that growers are able to use no-till systems with the aid of arbuscular mycorrhiza fungi inoculation with permanent cover cropping making the vineyard more resilient to droughts and heat waves. In premium wine grape regions viticulture has successfully adapted to a rapidly changing climate thus far, but berry based metrics are raising a concern that we may be approaching a tipping point.