Terroir 2020 banner
IVES 9 IVES Conference Series 9 From grapes to sparking wines: Aromas evaluation in a vine-spacing

From grapes to sparking wines: Aromas evaluation in a vine-spacing

Abstract

Aim: Wine aromatic profile is a combination of viticulture and oenological practices and it is related to character, quality, and consumer acceptance. Based on the competition between soil capacity and canopy development, and on the potential to produce sparkling wines at Caldas, in the south region of Minas Gerais (Brazil) (21°55´S and 46°23´W, altitude 1.100m), the aim of this work was the evaluation of the development of aromas (secondary metabolites) from grapes to sparkling wines in a vine-spacing experiment and whether the distance between the vines can influence the aromatic profile of the sparkling wines (final product). 

Methods and Results: The study was conducted with grapes from a 7-year-old vine-spacing experimental vineyard located at Caldas city and their respective must, base wine, and sparkling wine from vintage 2016 of the cultivar Chardonnay (Vitis vinifera L.) grafted onto 1103 Paulsen rootstock, in a clayey soil, and trained on a vertical shoot positioned trellis. Grapes were harvested in the maturity stage for sparkling wines, which were obtained by the traditional method. The volatile compounds in the specimens described were analysed by HS-SPME/GC-MS. Considering the five vine-spacing systems studied (0.5 m, 0.75 m, 1 m, 1.5 m, and 2 m), around 60-80 volatile compounds (secondary metabolites) were identified in the free form for all the specimens studied and PCA analysis showed discrimination among them. Thus, some compounds were slightly higher in must and wines than in berries (e.g., terpenoids, carotenoids). While in the grapes and must the high number of compounds was related to aldehydes and alcohols, in the base and sparkling wines it was related to esters, benzenoids and fatty acids compounds. These compounds resemble pleasant, powerful, floral, fruity odours of apricot and pineapple-banana note, and have an influence on foam.

Conclusions: 

All the processes (grapes metabolism, first fermentation and sur-lie) influenced the development of the aromas. Although the aromatic profile of the five vine-spacing systems sparkling wines was slightly different, a sensorial analysis would be an additional tool to this work to assess if these variations would be noticed by final consumers. 

Significance and Impact of the Study: This study impacts on the knowledge of the products obtained in this terroir, in which conditions one can have a product that pleases the final consumer more and also has a good production. In other words, the consideration for the balance among grape-growing and winemaking practices, productivity/economy, and quality of the final product.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Naíssa Prévide Bernardo1,2*, Aline de Oliveira1,2, Renata Vieira da Mota3, Francisco Mickael Medeiros Câmara3, Isabela Peregrino3, Murillo de Albuquerque Regina3, Eduardo Purgatto1,2

1Food and Experimental Nutrition Department, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
2Food Research Center, University of São Paulo, São Paulo, Brazil 
3Agricultural Research Company of Minas Gerais, Experimental Farm of Caldas, Grape and Wine Technological Center, Caldas – Minas Gerais, Brazil

Contact the author

Keywords

Vitis vinifera, food analysis, aromatic profile, PCA analysis, HS-SPME, GC-MS, Chardonnay grapes, vine-spacing systems

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

A microbial overview of txakoli wine: the case of three appellations of origin

The Txakoli, a white wine produced in the Basque Country (North of Spain), has recently gained popularity due to wine quality improvement and increase in both acreages of production and wine consumption. The aim of this study was to characterize the chemical and microbiological differences between Txakoli wines made with grapes from different sites.

Influence on grape aroma of nitrogen compounds and elicitors foliar applications in vineyards

The grape volatile compounds determine the wine quality and typicity [1]. Thus, looking for agronomic tools to improve its composition it is of great interest in the sector [2]

Characterization of variety-specific changes in bulk stomatal conductance in response to changes in atmospheric demand and drought stress

In wine growing regions around the world, climate change has the potential to affect vine transpiration and overall vineyard water use due to related changes in atmospheric demand and soil water deficits. Grapevines control their transpiration in response to a changing environment by regulating conductance of water through the soil-plant-atmosphere continuum. Most vineyard water use models currently estimate vine transpiration by applying generic crop coefficients to estimates of reference evapotranspiration, but this does not account for changes in vine conductance associated with water stress, nor differences thought to exist between varieties. The response of bulk stomatal conductance to daily weather variability and seasonal drought stress was studied on Cabernet-Sauvignon, Merlot, Tempranillo, Ugni blanc, and Semillon vines in a non-irrigated vineyard in Bordeaux France. Whole vine sap flow, temperature and humidity in the vine canopy, and net radiation absorbed by the vine canopy were measured on 15-minute intervals from early July through mid-September 2020, together with periodic measurement of leaf area, canopy porosity, and predawn leaf water potential. From this data, bulk stomatal conductance was calculated on 15-minute intervals, and multiple regression analysis was performed to identify key variables and their relative effect on conductance. Attention was focused on addressing multicollinearity and time-dependency in the explanatory variables and developing regression models that were readily interpretable. Variability of vapor pressure deficit over the day, and predawn water potential over the season explained much of the variability in conductance, with relative differences in response coefficients observed across the five varieties. By characterizing this conductance response, the dynamics of vine transpiration can be better parameterized in vineyard water use modeling of current and future climate scenarios.

Tropical fruit aroma in white wines: the role of fermentation esters and volatile thiols

Volatile thiols are impact aroma compounds, well-known in the literature for imparting tropical fruit aromas such as passion fruit, guava, grapefruit, and citrus in white wines [1]. More recent evidence suggests that tropical fruit aromas are also caused by other aroma compounds besides thiols, such as fermentation esters, or the interaction between these volatile families. Therefore, the objective of this study was to investigate the effects of combining esters and/or thiols to determine their impact on the fruitiness aroma perception of white wines. Pinot gris wine was produced at the OSU research winery and was dearomatized using Lichrolut® EN. Combinations of fermentation volatile compounds were added to the wine, forming the aroma base. Treatment wines were composed of additions of different concentrations and combinations of thiols and/or esters. Samples were subjected to sensory analysis where forty-six white wine consumers evaluated the orthonasal aroma of the wines and participated in Check-All-That-Apply (CATA).

Impact of changes in pruning practices on vine growth and yield

A gradual decline in vineyards has been observed over the past twenty years worldwide. This might be explained by the climate change, practices change or the increase of dieback diseases. To increase the longevity of vines, we studied the impact of different pruning strategies in four adult and four young vineyards located in France and Spain. In France, vineyards were planted with Cabernet franc on 3309C while Spanish trials were planted with Tempranillo grafted on 110R. Vegetative expression, yield, quality of berries and wood vessels conductivity were measured. The distribution of vegetative expression, yield and berry composition between primary and secondary vegetation were quantified. Finally, tomography was used to evaluate the implication of the treatments on sap flows.
First results show that i) the respectful pruning leads to an increase of 30 to 50% more secondary shoots than the aggressive pruning in France and between 15 and 20% in Spain, ii) there is no major effect on the yield over the first two years following the implementation of the new pruning practices, although the proportion of clusters from suckers is higher on the respectful pruning method. On young vines, the development of the trunk according to a respectful pruning leads to a loss of harvest 2 years after planting. This is due to the removal, on the future trunk, of the green suckers which carrying bunches. This operation carried out in spring rather than during winter pruning, would promote a better leaf / fruit balance when the plant comes into production, and could lead to better hydraulic conduction in the vessels of the trunk. Maintaining these trials for several years will provide more robust data to assess the impact of these practices on the vines over the long term.