Terroir 2008 banner
IVES 9 IVES Conference Series 9 Soil management of interrow spacing as an important factor to protect the vineyard soils from runoff and erosion under the Mediterranean climate

Soil management of interrow spacing as an important factor to protect the vineyard soils from runoff and erosion under the Mediterranean climate

Abstract

Nearly one third of the Herault vineyard (south of France) is planted on soils very sensitive to water runoff and erosion. This sensitivity is reinforced by the Mediterranean rain regime, characterized by sudden and violent rainfalls during autumn and spring, by the slopes of the plots, the bare surface of the inter-row spacing and the poor organic matter content of the upper part of these soils. The effects on the vine landscapes and production can be noticeable.
The soil management is one of the more influent parameters on the risk of runoff and erosion. By now, most of the vineyard soils are maintained bare all the year round by either soil tillage or chemical weeding.
A 7-years experiment (2000-2006) was set up on a 1 ha surface plot to compare the effects of soil management on runoff, soil erosion and agronomic results. It aimed to compare chemical weedings (antisprouting or defoliating herbicides), soil tillage and permanent grass covering 50% of the surface. Results show that permanent grass cover reduces runoff by nearly 50 % compared to chemical weeding, thanks to a better infiltrability. This leads to a significant decrease of erosion with a cover grass (1.4 T/ha/y) compared to chemical weeding (8.5 T/ha/y).
There were few effects on the production : the grass cover induces less yield (-16%) and less growth (-27% in weight) compared to the rest of the plot.
The soil was little affected by the cultural practices. The main result is that the grass cover made the soil microbiology live again, with an increase of 48% of the total microbial biomass.
The results of this experiment are significant enough to give advice on the best way to manage the vine according to the plot characteristics, to avoid runoff and erosion.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

William TRAMBOUZE (1), Patrick ANDRIEUX (2), Guillaume COULOUMA (2), Patrick ZANTE (3), Nathalie GOMA-FORTIN (1)

(1) Chambre d’Agriculture de l’Hérault, 15 rue Victor Hugo, F-34120 Pézenas, France
(2) INRA, UMR LISAH (INRA-IRD-Supagro), Campus SupAgro bâtiment 24, 2 pl. Pierre Viala, F-34060 Montpellier Cedex, France
(3) IRD, UMR LISAH (INRA-IRD-Supagro), Campus SupAgro bâtiment 24, 2 pl. Pierre Viala, F-34060 Montpellier Cedex, France

Contact the author

Keywords

Vigne, Erosion, Ruissellement, Pratiques culturales, Biologie du sol

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

TOWARDS THE SHELF-LIFE PREDICTION OF OLD CHAMPAGNE VINTAGES DEPENDING ON THE BOTTLE CAPACITY

Today, nearly one billion bottles of different sizes and capacities are aging in Champagne cellars while waiting to be put on the market. Among them, several tens of thousands of prestigious cuvees elaborated prior the 2000s are potentially concerned by prolonged aging on lees. However, when it comes to champagne tasting, dissolved CO₂ is a key compound responsible for the very much sought-after effer-vescence in glasses [1]. Yet, the slow decrease of dissolved CO₂ during prolonged aging of the most prestigious cuvees raises the issue of how long a champagne can age before it becomes unable to form CO₂ bubbles during tasting [2].

Amyndeon‐naoussa: the two faces of Xinomavro

Xinomavro is the most important indigenous red wine variety grown in Northern Greece. It participates in the production of several PGI wines in Macedonia while from 100% Xinomavro the PDO “Amyndeon” and “Naoussa” are produced. The viticultural area of Amyndeon lies in a plateau of 550 ‐700 m of altitude, in a semi‐continental climate with mostly deep sandy loamy soils derived from limestone and marl bedrocks while in Naoussa, Xinomavro is grown in a Mediterranean climate on more heavy textured soils, sandy clay loam to clay, derived from ophiolithic, limestone and marl bedrocks, in an altitude which varies from 150 to 400 m. Different soil, climate and viticultural technique interactions, result in great variability with respect to morphological, ampelographical and physiological characters of Xinomavro as well as in the characteristics of the wines produced. 

Highlighting a link between the structure of mannoproteins and their foaming properties in sparkling wines

Effervescence and foaming properties are the main visual characteristics assessed by the consumer during
sparkling wine tasting.

Grapevine gas exchange responses to combined variations of leaf water, nitrogen and carbon status – a case of study of fungi tolerant varieties

In the context of climate change and the need to reduce inputs, optimising photosynthesis and grapevine performance requires a better understanding of the interactions between water status, nitrogen availability, and source-sink relationships.

Study of grape physiology and wine quality (cv. Merlot) in different identified terroirs of the canton Ticino (Switzerland)

Une étude de la physiologie de la vigne (cv. Merlot) et de la qualité des vins a été réalisée au Tessin de 2006 à 2008. La méthodologie utilisée pour cette étude intégrait tous les paramètres qui définissent les terroirs: facteurs naturels (géologie, pédologie et climat), facteurs physiologiques de la vigne et qualité des vins qui sont les révélateurs de la valeur d’un terroir.