Terroir 2008 banner
IVES 9 IVES Conference Series 9 Soil management of interrow spacing as an important factor to protect the vineyard soils from runoff and erosion under the Mediterranean climate

Soil management of interrow spacing as an important factor to protect the vineyard soils from runoff and erosion under the Mediterranean climate

Abstract

Nearly one third of the Herault vineyard (south of France) is planted on soils very sensitive to water runoff and erosion. This sensitivity is reinforced by the Mediterranean rain regime, characterized by sudden and violent rainfalls during autumn and spring, by the slopes of the plots, the bare surface of the inter-row spacing and the poor organic matter content of the upper part of these soils. The effects on the vine landscapes and production can be noticeable.
The soil management is one of the more influent parameters on the risk of runoff and erosion. By now, most of the vineyard soils are maintained bare all the year round by either soil tillage or chemical weeding.
A 7-years experiment (2000-2006) was set up on a 1 ha surface plot to compare the effects of soil management on runoff, soil erosion and agronomic results. It aimed to compare chemical weedings (antisprouting or defoliating herbicides), soil tillage and permanent grass covering 50% of the surface. Results show that permanent grass cover reduces runoff by nearly 50 % compared to chemical weeding, thanks to a better infiltrability. This leads to a significant decrease of erosion with a cover grass (1.4 T/ha/y) compared to chemical weeding (8.5 T/ha/y).
There were few effects on the production : the grass cover induces less yield (-16%) and less growth (-27% in weight) compared to the rest of the plot.
The soil was little affected by the cultural practices. The main result is that the grass cover made the soil microbiology live again, with an increase of 48% of the total microbial biomass.
The results of this experiment are significant enough to give advice on the best way to manage the vine according to the plot characteristics, to avoid runoff and erosion.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

William TRAMBOUZE (1), Patrick ANDRIEUX (2), Guillaume COULOUMA (2), Patrick ZANTE (3), Nathalie GOMA-FORTIN (1)

(1) Chambre d’Agriculture de l’Hérault, 15 rue Victor Hugo, F-34120 Pézenas, France
(2) INRA, UMR LISAH (INRA-IRD-Supagro), Campus SupAgro bâtiment 24, 2 pl. Pierre Viala, F-34060 Montpellier Cedex, France
(3) IRD, UMR LISAH (INRA-IRD-Supagro), Campus SupAgro bâtiment 24, 2 pl. Pierre Viala, F-34060 Montpellier Cedex, France

Contact the author

Keywords

Vigne, Erosion, Ruissellement, Pratiques culturales, Biologie du sol

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Controlling Wine Oxidation: Effects of pH on Key Reaction Rates

Acidity is often touted as a predictor of wine ageability, though surprisingly few studies have systematically investigated the chemical basis for this claim.

Unveiling the Grapevine Red Blotch Virus (GRBV) host-pathogen arms-race via multi-omics for enhanced viral defense 

The Grapevine Red Blotch Virus (GRBV) poses a critical challenge to the wine sector, lacking a uniquely identified vector. Current control methods involve costly and labor-intensive vine removal, emphasizing the urgency for targeted alternatives. The limited understanding of intricate host-virus interactions underscores the need for foundational knowledge to develop innovative disease control strategies. These include efforts to boost the plant’s RNA interference (RNAi) response, including RNA-based topical applications.

Towards a regional mapping of vine water status based on crowdsourcing observations

Monitoring vine water status is a major challenge for vineyard management because it influences both yield and harvest quality. It is also a challenge at the territorial scale for identifying periods of high water restriction or zones regularly impacted by water stress. This information is of major importance for defining collective strategies, anticipating harvest logistic or applying for irrigation authorisation. At this spatial scale, existing tools and methods for monitoring vine water status are few and often require strong assumptions (e.g. water balance model). This paper proposes to consider a collaborative collection of observations by winegrowers and wine industry stakeholders (crowdsourcing) as an interesting alternative. Indeed, it allows the collection of a large number of field observations while pooling the collection effort. However, the feasibility of such a project and its interest in monitoring vine water status at regional scale has never been tested.

The objective of this article is to explore the possibility of making a regional map of vine water status based on crowdsourcing observations. It is based on the study of the free mobile application ApeX-Vigne, which allows the collection of observations about vine shoot growth. This information is easy to collect and can be considered, under certain conditions, as a proxy for vine water status. This article presents the first results obtained from the nearly 18,000 observations collected by winegrowers and wine industry stakeholders during 2019, 2020 and 2021 seasons. It presents the vine shoot growth maps obtained at regional scale and their evolution over the three vintages studied. It also proposes an analysis of the factors that favoured the number of observations collected and those that favoured their quality. These results open up new perspectives for monitoring vine water status at a regional scale but above they provide references for other crowdsourcing projects in viticulture.

Meso-scale future climate modeling (5 km resolution): application over French wine regions under the SRES A2 scenario (2041-2050)

In order to assess climate change at regional scales suitable to viticulture, the outputs of ARPEGE_Climat global model (resolution 0.5°) were downscaled using the Regional Atmospheric

WHAT’S FUTURE FOR SANTORINI’S VITICULTURE IN THE CONTEXT OF CLIMATE CHANGE

The own-rooted vineyard of Santorini is a unique case of vineyard worldwide that is been cultivated for thousands of years. On the island’s volcanic soil, the vines are still cultivated with traditional techniques, which are adapted to the specific and extreme weather conditions that prevail on it. While climate change is a reality in the Mediterranean region, will Santorini vineyard endure its impact? The study of the traditional training systems, techniques and vine density, as well as the application of sustainable solutions (cover crops and use of kaolin etc.) revealed sustainable methods for the adaptation of the local viticulture to new climatic phenomena that tend to be more and more frequent in the region due to climate change.