Terroir 2008 banner
IVES 9 IVES Conference Series 9 Using ΔC13 to assess viticultural and oenological suitability for Sangiovese of different pedoclimatic conditions in Chianti

Using ΔC13 to assess viticultural and oenological suitability for Sangiovese of different pedoclimatic conditions in Chianti

Abstract

A two years trial was carried out in Chianti (Central Italy) to assess at the detailed scale the viticultural and oenological suitability for Sangiovese of different pedoclimatic conditions, by means of the ΔC13 measured in the must sugars. Six plots placed in two specialised vineyards in similar geomorphological conditions were investigated. The plots differed for morphological position: summit, backslope and footslope. The soils of the vineyards were similar, except for structure, porosity and related hydropedological characteristics. Soil water content and temperature were measured at different depths. Measurements were replicated every one/two weeks. Soil characterization included macroporosity quantification by image analysis.
The yield, phenological phases, and chemical analysis of grapes were determined. The isotopic ratio 13C/12C was measured in the must sugar upon harvesting. Grapes of each plot were collected for wine making in small barrels. The wines obtained were analysed and submitted to a blind organoleptic testing.
The results demonstrated that almost all plots had rather high amounts of transpirable water, even during the driest time of the year; however, the response of Sangiovese was influenced by site hydropedology. The soils in morphological positions receiving and holding more water produced significant worst results in the moister 2005, than during the drier 2006. The drier soils yielded the best results in both years, but more prominently in 2005. Vines of the plots having a lower soil water availability produced relatively higher values of ΔC13, as well as a better oenological and organoleptic result. The ΔC13 test confirmed the limited stress conditions in the two vineyards, despite yields in the two years ranged from 2 to 8 kg per plant. This result highlighted the pedoclimatic limitations of the studied sites in obtaining high quality wine.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type: Article

Authors

Edoardo A.C. COSTANTINI (1), Sergio PELLEGRINI (1), Pierluigi BUCELLI (1), Paolo STORCHI (2), Nadia VIGNOZZI (1), Roberto BARBETTI (1), Stefano CAMPAGNOLO (1)

(1) CRA – Research centre for Agrobiology and Pedology, Florence, Italy
(2) CRA – Research unit for Viticulture, Arezzo, Italy

Contact the author

Keywords

carbon isotopes, hydropedology, porosity, land evaluation, terroir

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

The science of fungi in grapevine: An essential new book covering all aspects of fungi in viticulture

Grapevine is one of the world’s most important cultivated plants, domesticated from the wild vine over 11,000 years ago. The fungi associated with it are doubtless as old as the plant itself. Despite their co-evolution with the vine over the centuries, it was only with the invention of the microscope in the seventeenth century that fungi started to be recognised.

Water status response of Vitis vinifera L. cv Cabernet Sauvignon during the first years within the long-term VineyardFACE (Free Air Carbon dioxide Enrichment) study 

Understanding grapevine responses to increasing atmospheric CO2 (aCO2) concentrations is crucial for assessing the impact of climate change on viticulture. Previously, at the VineyardFACE (Free Air Carbon dioxide Enrichment) experiment in Geisenheim, leaf gas exchange measurements were made as Vitis vinifera cv. Cabernet Sauvignon established from planting (2014 to 2016) under aCO2 or elevated CO2 (eCO2, aCO2 + 20%) concentrations. Contrary to many preceding observations with grapevines and other perennial plant species the young vines showed an increased intrinsic water use efficiency (WUEi) that was mainly associated with an increase in net assimilation (A) rather than a decrease in stomatal conductance (gs) under eCO2.

The wine country, between landscape and promoting tool. The example of Chinon and Saint-Nicolas-de-Bourgueil vineyards (France)

When talking about wine, terroirs are never too far. The National Institute of Apellation d’Origine (INAO) defines it as a system inside of which interact a group of human factors, an agricultural production and a physical environment.

Impact of the ‘Pinot’-family on early ripening in cool climate viticulture varieties

‘Pinot Precoce Noir’ (PPN) is an early ripening clone of ‘Pinot Noir’ (PN). The phenological differentiation is visible by an about two weeks earlier onset of veraison. It was found that the early veraison locus Ver1 on chromosome 16, previously identified in ‘Calardis Musqué’, originated from PPN. A highly correlated SSR marker, namely GF16-Ver1, was developed and tested for its ability to molecularly differentiate between PPN and PN as well as its potential to trace individual descendants.

Methodology to assess vine cultivation suitability using climatic ranges for key physiological processes: results for three South African regions

Le climat a de fortes implications sur le bon fonctionnement physiologique de la vigne et a besoin d’être quantifié afin de déterminer l’aptitude des régions à la culture de la vigne. Une méthode, qui pourrait éventuellement servir à prévoir l’aptitude des régions à la culture de la vigne, est proposée.