Terroir 2008 banner
IVES 9 IVES Conference Series 9 Characterisation of viticultural and oenological practices in two French AOC in the middle Loire Valley: comparison of different methods to extract information from a survey among winegrowers

Characterisation of viticultural and oenological practices in two French AOC in the middle Loire Valley: comparison of different methods to extract information from a survey among winegrowers

Abstract

The type of wine is determined by environmental, plant materials and human factors. These factors are numerous and interact together, which makes it difficult to determine the hierarchy of their effects. We propose in this paper two methods to determine a hierarchy for these variables or their modalities. Using an inventory of agricultural, viticultural and oenological practices that are utilized for the production of Anjou Villages Brissac (AVB) or Anjou Rouges (AR) wines, it was attempted to determine for each of the variables whether their use differed significantly between the two appellations, and subsequently which of these practices were specific to each of the appellations.
Firstly, the variables and variable modalities were differentiated by a khi-squared distribution method. The database of the plots helped us to identify the practices which were used. An extraction of these plots was performed and the practices were classified by expertise.
Secondly, Classification and Regression Trees (CART) were used. This statistical method is non-parametric and non-linear and can, therefore, accommodate both continuous and categorical predictor variables. Variables can also be ranked in terms of their potential effect or relative importance. Using CART, the relative importance of each environmental, agricultural, viticultural and oenological variable in predicting whether a wine belonged to the appellation AVB or AR was determined and a final decision tree was constructed.
The final classification of variables using these different methods was compared and the observed differences were analysed. It remains to validate the hierarchical classification of the variables by means of experimentation with different technical itineraries on reference vineyards.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

SCHOLTUS-THIOLLET M. (1), MORLAT R. (1) & CAREY V.A. (2)

(1) INRA UEVV, UMT Vinitera, 42, rue Georges Morel BP 60057 49071 Beaucouzé France
(2) Lecturer, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, 7602 Matieland, South Africa

Contact the author

Keywords

viticultural practices, oenological practices, global approach, CART, expertise

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

FUNGAL DIVERSITY AND DYNAMICS IN CHAMPAGNE VINEYARDS: FROM VINE TO WINE

Champagne is a well-known wine region in Northern France with distinct terroirs and three main grape varieties. As for any vineyard, wine quality is highly linked to the microbiological characteristics of the raw materials. However, Champagne grape microbiota, especially its fungal component, has yet to be fully characterized. Our study focused on describing this mycobiota, from vine to small scale model wine, for the two main Champagne grape varieties, Pinot Noir and Meunier, using complementary cultural and omics approaches.

Exploring and unravelling the complex toasted oak wood (Q. sp.) volatilome using GCxGC-TOFMS technique

For coopers, toasting process is considered as a crucial step in barrel production where oak wood develops several specific aromatic nuances released to the wine during its maturation

Use of a new, miniaturized, low-cost spectral sensor to estimate and map the vineyard water status from a mobile 

Optimizing the use of water and improving irrigation strategies has become increasingly important in most winegrowing countries due to the consequences of climate change, which are leading to more frequent droughts, heat waves, or alteration of precipitation patterns. Optimized irrigation scheduling can only be based on a reliable knowledge of the vineyard water status.

In this context, this work aims at the development of a novel methodology, using a contactless, miniaturized, low-cost NIR spectral tool to monitor (on-the-go) the vineyard water status variability. On-the-go spectral measurements were acquired in the vineyard using a NIR micro spectrometer, operating in the 900–1900 nm spectral range, from a ground vehicle moving at 3 km/h. Spectral measurements were collected on the northeast side of the canopy across four different dates (July 8th, 14th, 21st and August 12th) during 2021 season in a commercial vineyard (3 ha). Grapevines of Vitis vinifera L. Graciano planted on a VSP trellis were monitored at solar noon using stem water potential (Ψs) as reference indicators of plant water status. In total, 108 measurements of Ψs were taken (27 vines per date).

Calibration and prediction models were performed using Partial Least Squares (PLS) regression. The best prediction models for grapevine water status yielded a determination coefficient of cross-validation (r2cv) of 0.67 and a root mean square error of cross-validation (RMSEcv) of 0.131 MPa. This predictive model was employed to map the spatial variability of the vineyard water status and provided useful, practical information towards the implementation of appropriate irrigation strategies. The outcomes presented in this work show the great potential of this low-cost methodology to assess the vineyard stem water potential and its spatial variability in a commercial vineyard.

Photoselective shade films affect grapevine berry secondary metabolism and wine composition

Grapevine physiology and production are challenged by forecasted increases in temperature and water deficits. Within this scenario, photoselective overhead shade films are promising tools in warm viticulture areas to overcome climate change related factors. The aim of this study was to evaluate the vulnerability of ‘Cabernet Sauvignon’ grape berry to solar radiation overexposure and optimize shade film use for berry integrity. A randomized complete block design field study was conducted across two years (2020-2021) in Oakville, Napa Valley, CA, with four shade films (D1, D3, D4, D5) differing in the percent of radiation spectra transmitted and compared to an uncovered control (C0). Integrals for gas exchange parameters and mid-day stem water potential were unaffected by the shade films in 2020 and 2021. By harvest, berries from uncovered and shaded vines did not differ in their size or primary metabolism in either year. Despite precipitation exclusion during the dormant season in the shaded treatments, yield did not differ between them and the control in either season. In 2020, total skin anthocyanins (mg/g fresh mass) in the shaded treatments was greater than C0 during berry ripening and at harvest. Conversely, flavonol concentrations in 2020 were reduced in shaded vines compared to C0. The 2020 growing season highlighted the impact of heat degradation on flavonoids. Flavonoid concentrations in 2021 increased until harvest while flavonoid degradation was apparent from veraison to harvest in 2020 across shaded and control vines. Wine analyses highlighted the importance of light spectra to modify wine composition. Wine color intensity, tonality and anthocyanin values were enhanced in D4 whereas antioxidant properties were enhanced in C0 and D5 wines. Altogether, our results highlighted the need of new approaches in warm viticulture areas given the impact that composition of light has on berry and wine quality.

The state of the climate

The climate has warmed over the past century or more bringing about changes in numerous aspects in both earth and human systems