Terroir 2008 banner
IVES 9 IVES Conference Series 9 Considerations about the concept of “terroir”: definition and research direction

Considerations about the concept of “terroir”: definition and research direction

Abstract

On exposera la distinction et la relation entre: “Etude des milieux”, “Zonage Petit ou Zonage Technique ou Sub Zonage”, “Grand Zonage”, “Délimitation des zones productives” ex. vitivinicoles, entre “Terroir”, “Territoire”, “Terra – Nature”, “Univers” d’après la “Grande Filiera” (“Grande Filière”), entre “Qualité organoleptique classique” (technique), “Qualité perçue par le Consommateur ou Préférence” et les autres “qualités” (environ 90) , entre “Pyramides de la Qualité classique”, “Pyramide du Consommateur”, Pyramide de la “Quantité – Préférence”, etc. 
Il est mis en évidence que les “zonages” (“Grands Zonages” selon le “Grande Filiera”) doivent descendre et s’harmoniser avec les objectifs (“Grands Objectifs”selon la “Grande Filiere”) de l’activité [maximum (meilleur) profit économique socio environnemental existentiel éthique meta éthique selon la “Grande Filiere”] et non pas avec les moyens utilisés pour atteindre ces objectifs (ex. “terroir”, “qualité organoleptique classique”, “paysage”, “tourisme”, les techniques de culture, etc., etc.). On souligne par ailleurs l’importance fondamentale qu’assume de plus en plus la “Qualité Economique”, la “Qualité Socio-Environnementale”, la “Qualité Existentielle”, la “Qualité Ethique” selon le “Grande Filiera”, l’ approfondissement de façon adéquate et la définition de manière universelle de la terminologie et, à la fin, le lien de la technique, de la recherche aux objectifs et non pas aux moyens.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Giovanni CARGNELLO

SOC Techniques de Culture – CRA-Centre de recherche pour la viticulture, Viale XXVIII Aprile, 26 -31015 Conegliano (Treviso) Italie

Contact the author

Keywords

petit zonage, grand zonage, terroir, territoire, terre, nature, univers, qualité, préférence, qualité économique, qualité sociale, qualité existentielle, qualité éthique, économie de la qualité, pyramide de la qualité, pyramide du consommateur, grande filière.

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Characterization of Cabernet Sauvignon from Maipo valley (Chile) using fluorescence measurement

Viral diseases are a significant cause of both decreased grape quality and vineyard production. Important agents include grapevine leafroll-associated virus (glravs) and grapevine rupestris stem pitting-associated virus (grspav). However, conducting phytosanitary analysis of vineyards for viruses on-site is challenging, and molecular testing is generally expensive.

Precision viticultural strategy for managing intra-vineyard variability in grape aroma using UAV-based vigour indices

In several cultivars, such as Gewürztraminer and Riesling, grape and wine aromas are determined by volatile terpenoids.

Determination of titratable acidity, sugar and organic acid content in red and white wine grape cultivars during ripening by VIS–NIR hy¬perspectral imaging

Grape harvest time is one of the most fundamental aspects that affect grape quality and thus wine quality. Many factors influence the decision of harvest; among them technological and phenolic maturity of grape. Technological ripeness is mainly related to sugar concentration, titratable acidity and pH. Conventional methods for chemical analysis of grapes are normally sample-destructive, time-consuming, include laborious sample preparation steps, and generate chemical waste, thereby limiting their utility in online/in-line quality monitoring. Moreover, destructive analyses can be performed only on a limited number of fruit pieces and, thus, their statistical relevance could be limited. This study evaluated the ability of a lab-scale hyperspectral imaging (HYP-IM) technique to predict titratable acidity, organic acid and sugar content of grapes. Samples of Cabernet franc and Chenin blanc grapes were consecutively collected six times at weekly intervals after veraison. The images were recorded thanks to the hyperspectral imaging camera Pica L (Resonon) in a spectral range from 400 to 1000 nm. Statistics were performed using Microsoft Xlstat software. Successively, the berries were analyzed for their sugar (glucose and fructose) and organic acid (malic and tartaric acid) content and titratable acidity according to usual methods.

Macromolecular characterization of disease resistant red wine varieties (PIWI)

Pilzwiderstandsfähige (PIWI) are disease resistant Vitis vinifera interspecific hybrid varieties that are receiving increasing attention for ability to ripen in cool climates and their resistance to grapevine fungal diseases. Wines produced from these varieties have not been characterized, especially regarding their macromolecular composition. This study characterised and quantified colloid-forming molecules (proteins, polysaccharides and phenolics) of red PIWI wines produced in the UK. METHODS: In 2019 6 wines were made from the PIWI varieties Rondo, Cabernet Jura, Cabernet Cortis, Cabernet Noir, Regent and Cabertin grown at the Plumpton Rock Lodge Vineyard in Sussex (UK) and harvested at similar level of maturity (TSS, pH and TA). All juice was chaptalized to the same potential alcohol of 12%. Small scale winemaking (1L) was performed in quadruplicate using Bodum® coffee plungers to manage maceration [1]. Residual sugar content, pH, and titratable acidity were monitored during fermentation. For finished wines, the protein and polysaccharide content was measured by HPLC-SEC [2], while the total phenolic content was assessed using the Folin-Ciocalteau method [3]. The protein profile of the wines was further investigated by SDS-PAGE [4]. RESULTS: Fermentations (n=24) were all carried out to completion within 8 days.

Changes in flavonol profile are a reliable indicator to assess the exposure of red grape berries to solar radiation and canopy architecture

Exposure to solar radiation affects berry composition through photomorphogenesis or changes in temperature. Flavonol synthesis is upregulated by UV‐B radiation