Terroir 2008 banner
IVES 9 IVES Conference Series 9 AOC Saint-Romain, Hautes-Côtes-de-Beaune, Burgundy: analysis of a “terroir”

AOC Saint-Romain, Hautes-Côtes-de-Beaune, Burgundy: analysis of a “terroir”

Abstract

The abbreviation AOC designates, since 1905 in France, wines which characteristics and reputation are due to a proper “terroir”. The delimitation of such “terroirs” consists in a technical and statutory procedure which has developed by steps.
The delimitation of the AOC Champagne and Kaefferkopf terroirs, presented here by the authors, confirms the validity of the modern “terroir” concept: A “terroir” is a delimited geographic area for which there is collective knowledge of the interaction between the physical and biological environment and applied vitivinicultural practises.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Gilles FLUTET, Cécile FRANCHOIS, Alexis GUYOT, Eric VINCENT

Institut NAtional de l’Origine et de la qualité
51, Rue d’Anjou – 75008 – Paris – France

Contact the author

Keywords

Appellation d’Origine Contrôlée, delimitation, “terroir”, vitivinicultural practises

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Validation of the viticulture zoning methodology applied to determine the homogenous soil units present on D.O. Ribera de Duero region

The methodology to viticulture zoning developed and proposed by Gómez-Miguel and Sotés (1992) has been studied in order to validate it. This was the main aim of this work

Investigating kokumi flavour oligopeptides in wine

Kokumi is a complex sensation perceived as enhanced palatability. Under the influence of kokumi substances, foods/beverages tastes become more flavorful with increased intensity, spread, continuity, richness, harmony, and punch which are the six related characteristics corresponding to the Kokumi sensory concept [1].

Preliminar study of adsorption of unstable white wine proteins using zirconium oxide supported on activated alumina by atomic layer deposition method

A common problem in wineries is haze formation after bottling, mainly caused by unstable proteins present in white wine. The most used material to eliminate these proteins is bentonite.

How artificial intelligence (AI) is helping winegrowers to deal with adversity from climate change

Artificial intelligence (AI) for winegrowers refers to robotics, smart sensor technology, and machine learning applied to solve climate change problems. Our research group has developed novel technology based on AI in the vineyard to monitor vineyard growth using computer vision analysis (VitiCanopy App) and grape maturity based on berry cell death to predict flavor and aroma profiles of berries and final wines.

Characterization of bunch compactness and identification of associated genes in a diverse collection of cultivars of Vitis vinifera L.

Compactness is a complex trait of V. vinifera L. and is defined ultimately by the portion of free space within the bunch which is not occupied by the berries. A high degree of compactness results in poor ventilation and consequently a higher susceptibility to fungal diseases, diminishing the quality of the fruit. The easiness to conceptualize the trait and its importance arguably contrasts with the difficulty to measure and quantify it. However, recent technical advancements have allowed to study this attribute more accurately over the last decade. Our main objective was to explore the underlying genetics determining bunch compactness by applying updated phenotyping methods in a collection of V. vinifera L. cultivars with a wide genetic diversity.