Macrowine 2021
IVES 9 IVES Conference Series 9 Influence of Lactiplantibacillus plantarum and Oenococcus oeni strains on sensory profile of sicilian nero d’avola wine after malolactic fermentation.

Influence of Lactiplantibacillus plantarum and Oenococcus oeni strains on sensory profile of sicilian nero d’avola wine after malolactic fermentation.

Abstract

AIM: Malolactic fermentation is a process of decarboxylation of L-malic acid into L-lactic acid and carbon dioxide that leads to deacidification, modification of odors and flavors of wines [1]. Different LAB strains belonging to species Lactiplantibacillus plantarum and Oenococcus oeni are able to diversify wines under the sensory aspect after malolactic fermentation [2]. In this context, the sensory impact of malolactic fermentation conducted on Nero d’Avola grape musts in Sicily using 4 commercial starters LAB was investigated.

METHODS: bunches of Nero d’Avola grapes, after destemming, were aliquoted into ten stainless steel tanks and inoculated with Saccharomyces cerevisiae NF213[3]. Five trials were carried out in relation to the commercial LAB strain used for malolactic fermentation: ML PrimeTM (T13), Lalvin VP41® (T14), O-Mega® (T15) and PN4® (T16). ML PrimeTM was a commercial formulation based on L. plantarum, while Lalvin VP41®, O-Mega® and PN4® contained O. oeni. All LAB strains were added to the must after 24 h of yeast inoculum. An experimental control production was carried out in the absence of LAB starter. During fermentation, physicochemical and microbiological parameters were determined. Furthermore, through interdelta (yeast) and RAPD-PCR (LAB) analysis, the dominance of the starter was determined. After 15 days of maceration, the wines were racked and bottled. Six months after bottling, the volatile organic component was determined and the sensory evaluation of the experimental wines was performed.

RESULTS: A genotypic approach demonstrated a dominance of starter strains of yeast and LAB ranging from 88 to 92%. The initial content of L-malic acid in Nero d’Avola musts was 1.92 g/L. After 2 days from the addition of LAB, malic acid values were the lowest in T13, while in T14, T15 and T16 no significant reductions in malic acid were reached. At the end of alcoholic fermentation, trials inoculated with different strains of O. oeni (T14, T15 and T16) showed a degradation of malic acid up to 3 weeks after the end of alcoholic fermentation, reaching values lower than 0.3 g/L, whereas in T13 malic acid reached values of 0.6 g/L. In the control trial T17, no malolactic fermentations were recorded. VOC analysis allowed ascertaining the presence of alcohols, carboxylic acids and esters in higher quantities. Sensorial analysis showed a higher preference for trial T13, which obtained the highest results in terms of general acceptability. Slightly lower results were obtained in the other wines.

CONCLUSIONS

The use of L. plantarum improved the aromatic complexity of Nero d’Avola wines compared to those obtained with O. oeni. In this context, the use of ML PrimeTM certainly had a positive influence on several attributes, positively enhancing their sensory characteristics.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Giancarlo Moschetti 

Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy,Michele, MATRAXIA, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Rosario, PRESTIANNI, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Valentina, CRAPARO,  Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Vincenzo, NASELLI, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Giancarlo, MOSCHETTI, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Luca, SETTANNI, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Raimondo, GAGLIO, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy.  Antonella, MAGGIO, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Parco d’Orleans II, Palermo, building 17, Italy  Antonio, ALFONZO, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Nicola, FRANCESCA, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy.

Contact the author

Keywords

lactiplantibacillus plantarum; oenococcus oeni; malolactic fermentation; nero d’avola wine; sensory analysis

Citation

Related articles…

Fine-scale projections of future climate in the vineyards of southern Uruguay

In viticulture, climate change significantly impacts the plant’s development and the quality and characteristics of wines. These variations are often observed over short distances in a wine-growing region and are linked to local features (slope, soil, seasonal climate, etc.). The high spatial variability of climate caused by local factors is often of the same order or even higher than the temperature increase simulated by the different IPCC scenarios.

Effect of irrigation in cover cropping vineyards

Cover cropping in vineyard is a sustainable and alternative soil management system to conventional tillage that is gaining more and more importance among winegrowers and is being promoted, among other organizations, by the European Union through the eco-schemes of the Common Agricultural Policy.
However, the use of cover crops in Mediterranean viticultural environments is conditioned, to a large extent, by the availability of irrigation water which, in a context of global warming like the one we are experiencing, must be adjusted to savings strategies, supplying to the vine only what it needs in each moment.

Definition and planning of viticultural landscapes case study in the “Côtes du Rhône Gardoises”

Les préoccupations actuelles autour des paysages viticoles vont au-delà des clichés promotionnels développés par les stratégies marketing. En effet, les paysages sont aujourd’hui au cœur d’une demande sociale croissante qui se traduit par différentes lois (la loi paysage de 1993, le paysage reconnu comme patrimoine commun de la nation par la loi n°95-101, la création du Conseil national du paysage par arrêté du 8/12/2000).

Un modello di lavoro per lo studio dell’ up-grading tecnologico del vigneto nel Veneto Occidentale. Connettività degli attori e mappatura su dati avepa integrati con rilevamento speditivo e qualitativo

Il lavoro si prefigge di esaminare la propensione alla modernizzazione della viticoltura del Veneto Occidentale, letto attraverso la diffusione di forme di allevamento a sviluppo contenuto.

EXPLORING THE ROLE OF TRANSITION METAL IONS IN THE EVOLUTION OF ESTERS COMPOSITION OF YOUNG WHITE WINE DURING AGEING

Young white wines are typically released to the market a few months after harvest, to be consumed within a year, when their fresh fruity aromas are still dominant and appealing to modern consumers. Esters, particularly higher alcohol acetates (HAAs) and ethyl esters of fatty acids (EEFAs), play a central role in the fruity expression of young white wines [1]. However, these esters are known to undergo significant hydrolysis during the first months of aging [1, 2].