Terroir 2008 banner
IVES 9 IVES Conference Series 9 Is it relevant to consider remote sensing information for targeted plant monitoring?

Is it relevant to consider remote sensing information for targeted plant monitoring?

Abstract

An experiment was carried out to test the relevance of using satellite images (NDVI) to define locations of plant monitoring systems. The experiment took place over a 200 ha commercial vineyard located in Navarra (Spain). Airborne images of 30 cm. resolution were processed to compute a biomass index (NDVI). Images were segmented in four classes according to the NDVI pixel values. Each of the zones was assigned a linguistic label: low, medium, high, very high. For each of these zones, punctual information related to plant vigour and plant water deficit were collected during the vine growing period. Plant monitoring systems (dendrometer) and soil monitoring systems (C-probe) were positioned according to NDVI zones. Parameters like Daily growth (DG) and maximum daily shrinkage (MDS) were derived from dendrometers for each NDVI zone. Similarly, soil moisture provided by soil sensors was associated to NDVI zones. Finally, harvest quality was measured.
Data were analysed on a NDVI zone basis. Results confirmed the relevance of NDVI information to highlight zones of different vigour and yield which corresponded, in our conditions, to zones with different water restriction. Results highlighted the difficulty to use NDVI information as a surrogate for harvest quality. This experiment also pointed out the lack of coherence between NDVI zones and information provided by plant and soil monitoring systems. This weak relation may be explained by problems of high variability due to the choice of the plant or the soil location and difficulty to compare values provided by different sensors at the same time.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Luis G. SANTESTEBAN (1), Bruno TISSEYRE (2), Bernardo ROYO (1), Serge GUILLAUME (2)

(1) Dpto. Producción Agraria, Edificio Los Olivos, Campus Arrosadia 31006 Pamplona-NA, Spain
(2) UMR ITAP, Cemagref/Montpellier SupAgro, 2 place Viala, 34060 Montpellier, France

Contact the author

Keywords

Precision viticulture, NDVI, dendrometry, leaf water potential, Vitis vinifera L.

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

The impact of global warming on Ontario’s icewine industry

Ontario’s wine regions lie at the climatic margins of commercial viticulture owing to their cold winters and short cool growing season. The gradual warming of northern latitudes projected under a human-induced climate change scenario could bring mixed benefits to these wine regions.

Characterisation of viticultural and oenological practices in two French AOC in the middle Loire Valley: comparison of different methods to extract information from a survey among winegrowers

The type of wine is determined by environmental, plant materials and human factors. These factors are numerous and interact together, which makes it difficult to determine the hierarchy of their effects

Metal reducing agents (Fe and Al) as possible agents to measure the dimensions of the hydrogen sulfide (H2S) pool of precursors in wines

Reductive wine fault is characterized by the presence of odors such as rotten eggs or spoiled camembert cheese, originating from hydrogen sulfide (H2S) and methanethiol (MeSH) [1]. These compounds stabilize in polysulfide forms, creating a complex pool of precursors that will revert to both molecules when the environment becomes anoxic [2].

Effect of supplementation with inactive yeast during alcoholic fermentation in base wine for sparkling

INTRODUCTION: Foam stability of sparkling wines is significantly favored by the presence of surface active agents such as proteins and polysaccharides [1]. For that reason, the renowned sparkling wines are aged after the second fermentation in contact with the lees for several months (even years). Thereby wines are enriched in these macromolecules due to yeast autolysis. Since this practice is slow and costly, winemakers are seeking for alternative procedures to increase their concentration in base wines. In that sense, the supplementation with inactive yeast during alcoholic fermentation has been proposed [2]. The aim of this study was to determine whether this new strategy is really useful for enriching base wines in macromolecules and for improving foam properties of the base wines.

ENRICHMENT OF THE OENOLOGICAL MALDI-TOF/MS PROTEIN SPECTRA DATABASE FOR RELIABLE OENOLOGICAL YEAST AND BACTERIA IDENTIFICATION

The Matrix Assisted Laser Desorption/Ionization–Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) technology is commonly used in food and medical sector to identify yeast or bacteria species isolated from a nutritive culture media. Since a decade, brewery and oenology industries have been attracted to this method which combines fast analysis times, reliability and low cost of analysis. Briefly, this method is based on the comparison of the MALDI-TOF/MS protein spectra of an isolated colony of yeast or bacteria with those contain in a manufacturer’s reference protein spectra database. Initiated in 2015, the creation of the first oenological mass spectra database has proved to be essential for increase quality of species identification.