Terroir 2008 banner
IVES 9 IVES Conference Series 9 Is it relevant to consider remote sensing information for targeted plant monitoring?

Is it relevant to consider remote sensing information for targeted plant monitoring?

Abstract

An experiment was carried out to test the relevance of using satellite images (NDVI) to define locations of plant monitoring systems. The experiment took place over a 200 ha commercial vineyard located in Navarra (Spain). Airborne images of 30 cm. resolution were processed to compute a biomass index (NDVI). Images were segmented in four classes according to the NDVI pixel values. Each of the zones was assigned a linguistic label: low, medium, high, very high. For each of these zones, punctual information related to plant vigour and plant water deficit were collected during the vine growing period. Plant monitoring systems (dendrometer) and soil monitoring systems (C-probe) were positioned according to NDVI zones. Parameters like Daily growth (DG) and maximum daily shrinkage (MDS) were derived from dendrometers for each NDVI zone. Similarly, soil moisture provided by soil sensors was associated to NDVI zones. Finally, harvest quality was measured.
Data were analysed on a NDVI zone basis. Results confirmed the relevance of NDVI information to highlight zones of different vigour and yield which corresponded, in our conditions, to zones with different water restriction. Results highlighted the difficulty to use NDVI information as a surrogate for harvest quality. This experiment also pointed out the lack of coherence between NDVI zones and information provided by plant and soil monitoring systems. This weak relation may be explained by problems of high variability due to the choice of the plant or the soil location and difficulty to compare values provided by different sensors at the same time.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Luis G. SANTESTEBAN (1), Bruno TISSEYRE (2), Bernardo ROYO (1), Serge GUILLAUME (2)

(1) Dpto. Producción Agraria, Edificio Los Olivos, Campus Arrosadia 31006 Pamplona-NA, Spain
(2) UMR ITAP, Cemagref/Montpellier SupAgro, 2 place Viala, 34060 Montpellier, France

Contact the author

Keywords

Precision viticulture, NDVI, dendrometry, leaf water potential, Vitis vinifera L.

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Adaptation to soil and climate through the choice of plant material

Choosing the rootstock, the scion variety and the training system best suited to the local soil and climate are the key elements for an economically sustainable production of wine. The choice of the rootstock/scion variety best adapted to the characteristics of the soil is essential but, by changing climatic conditions, ongoing climate change disrupts the fine-tuned local equilibrium. Higher temperatures induce shifts in developmental stages, with on the one hand increasing fears of spring frost damages and, on the other hand, ripening during the warmest periods in summer. Expected higher water demand and longer and more frequent drought events are also major concerns. The genetic control of the phenotypes, by genomic information but also by the epigenetic control of gene expression, offers a lot of opportunities for adapting the plant material to the future. For complex traits, genomic selection is also a promising method for predicting phenotypes. However, ecophysiological modelling is necessary to better anticipate the phenotypes in unexplored climatic conditions Genetic approaches applied on parameters of ecophysiological models rather than raw observed data are more than ever the basis for finding, or building, the ideal varieties of the future.

Chemical and sensory evaluation of Bordeaux wines (Cabernet sauvignon and Merlot) and correlation with wine age

This study was carried out on 24 vintages of Cabernet sauvignon and on 7 vintages of Merlot produced by two different Bordeaux growing areas. Proanthocyanidin monomers and oligomers, and several parameters of the proanthocyanidin fraction were analytically assessed.

The influence of RNAi-expressing rootstocks in controlling grey mold on grapevine cultivars

Worldwide, with an average of 6.7 million cultivated hectares, of which exclusively 51% in Europe (faostat, 2021), the production of table and wine grapes is a leading sector, with continued growth in Europe in the area devoted to vine cultivation. during the growing season, most of the plant organs can be susceptible to several fungal and oomycete diseases, leading to important economic losses and causing detrimental effects on fruit quality. the increasingly scarce availability of fungicidal products, often also related to their relative impact on the environment, coupled with the emergence of resistance in the pathogen to these products, make defence increasingly challenging.

Sustainable agriculture and food innovation: preserving agrodiversity and advancing vineyard resilience in Madeira

The ISOPlexis – Center for Sustainable Agriculture and Food Technology, University of Madeira, is a research unit that develops activities in the fields of Sustainable Agriculture, Agri-food Technology and Bioeconomy, with focus on agrodiversity monitoring and phenotyping,

Meso-scale geostatistical analysis: a method for improving experimental design

The growing region of Barolo DOCG certified wines is topographically complex. The region is famous for this complexity and for the associated terroir driven Nebbiolo grapes and wines derived distinctly from this varietal. Although it is recognized that the Barolo area is unusual topographically and it is assumed that this unusual topography lends to the inherit terroir, the specifics of this relationship are less well defined.