Terroir 2008 banner
IVES 9 IVES Conference Series 9 Is it relevant to consider remote sensing information for targeted plant monitoring?

Is it relevant to consider remote sensing information for targeted plant monitoring?

Abstract

An experiment was carried out to test the relevance of using satellite images (NDVI) to define locations of plant monitoring systems. The experiment took place over a 200 ha commercial vineyard located in Navarra (Spain). Airborne images of 30 cm. resolution were processed to compute a biomass index (NDVI). Images were segmented in four classes according to the NDVI pixel values. Each of the zones was assigned a linguistic label: low, medium, high, very high. For each of these zones, punctual information related to plant vigour and plant water deficit were collected during the vine growing period. Plant monitoring systems (dendrometer) and soil monitoring systems (C-probe) were positioned according to NDVI zones. Parameters like Daily growth (DG) and maximum daily shrinkage (MDS) were derived from dendrometers for each NDVI zone. Similarly, soil moisture provided by soil sensors was associated to NDVI zones. Finally, harvest quality was measured.
Data were analysed on a NDVI zone basis. Results confirmed the relevance of NDVI information to highlight zones of different vigour and yield which corresponded, in our conditions, to zones with different water restriction. Results highlighted the difficulty to use NDVI information as a surrogate for harvest quality. This experiment also pointed out the lack of coherence between NDVI zones and information provided by plant and soil monitoring systems. This weak relation may be explained by problems of high variability due to the choice of the plant or the soil location and difficulty to compare values provided by different sensors at the same time.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Luis G. SANTESTEBAN (1), Bruno TISSEYRE (2), Bernardo ROYO (1), Serge GUILLAUME (2)

(1) Dpto. Producción Agraria, Edificio Los Olivos, Campus Arrosadia 31006 Pamplona-NA, Spain
(2) UMR ITAP, Cemagref/Montpellier SupAgro, 2 place Viala, 34060 Montpellier, France

Contact the author

Keywords

Precision viticulture, NDVI, dendrometry, leaf water potential, Vitis vinifera L.

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Grape pomace, an active ingredient at the intestinal level: Updated evidence

Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. GP-derived products have been proposed to manage cardiovascular risk factors, including endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obesity. Studies on the potential impact of GP on gut health are much more recent. However, it is suggested that, to some extent, this activity of GP as a cardiometabolic health-promoting ingredient would begin in the gastrointestinal tract as GP components (i.e., (poly)phenols and fiber) undergo extensive catabolism, mainly by the action of the intestinal microbiota, that gives rise to low-molecular-weight bioactive compounds that can be absorbed and utilized by the body.

«Aztec» – the new white table grape resistant variety

This paper presents is the create, the study and amplographic
description the new white Greek table variety grapes “Aztec”, created in 2013 by breeder P. Zamanidis at
the Athens vineyard of the Institute of Olive, Subtropical Plants and Vine.

Late frost protection in Champagne

Probably one of the most counterintuitive impacts of climate change on vine is the increased frequency of late frost. Champagne, due to its septentrional position is historically and regularly affected by this meteorological hazard. Champagne has therefore developed a strong experience in frost protection with first experiments dating from the end of 19th century. Frost protection can be divided in two parts: passive and active. Passive protection includes all the methods that do not seek to modify the vine’s environment or resistance at the time of frost. The most iconic passive protection in Champagne is the establishment of the individual reserve. This reserve allows to stock a certain quantity of clear wine during a surplus year to compensate a meteorological hazard like frost during the following years. Other common passive methods are the control of planting area (walls, bushes, topography), the choice of grape variety, late pruning, or the impact of grass cover and tillage. Active frost protection is also divided in two parts. Most of the existing techniques tend to modify vine’s environment. Most of the time they provide warmth (candles, heaters, windmills, heating cables…), or stabilise bud’s temperature above a lethal threshold (water sprinkling). The other way to actively fight is to enhance the resistance of buds to frost (elicitors). The Comité Champagne evaluates frost protection methods following three main axes: the efficiency, the profitability, and the environmental impact through a lifecycle assessment. This study will present the results on both passive and active protection following these three axes.

Berry maturity effects on physic and chemical characteristics of traditional sparkling wines produced from Chardonnay and Sauvignon blanc grapes.

One of the consequences of global warming is the quick berry development giving rise to a disconnection between sugar accumulation and the formation of important quality minor compounds such as phenolics and volatile compounds being a huge challenge for the oenologist [1]. Thus, this phenomenon is forcing the search on strategies for maintaining the quality of wines despite this situation. One possibility is to make an early harvest with a low sugar concentration (18ºbrix) and advanced harvest for sparkling wine (20-21ºbrix) and afterwards to combine base wines properly and carry out the second fermentation trying to compensate the lack of secondary metabolites due to the quick berry development and higher alcohol degree of the second one, not adequate itself for sparkling wine. The aim of this study was to assess the chemical and physical characteristics, mainly volatile profile, and foaming properties of sparkling wines from grapes of Chardonnay and Sauvignon blanc.

Profiling and evaluating wine lees by-products from various yeast strains against grapevine pathogens

Wine lees are the sediment that settles at the bottom of wine barrels, tanks, or bottles during the winemaking process and represent the second most significant by-product of wineries.