Terroir 2008 banner
IVES 9 IVES Conference Series 9 On the stability of spectral features of four vine varieties in Brazil, Chile and France

On the stability of spectral features of four vine varieties in Brazil, Chile and France

Abstract

Satellite images of vineyards in France, Chile, and Brazil are used to study spectral differences between the vine varieties Cabernet Sauvignon, Merlot, Pinot Noir, and Chardonnay, to verify if features of a given variety are conserved at vineyards in completely different terroirs. Data are eight images from ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) orbital sensor, for years 2000, 2001, 2002, 2004, and 2006. Additional information is from maps of properties, field surveys and GPS measurements. In France, data is from the Champagne region (Pinot Noir and Chardonnay), and Bordeaux (Cabernet Sauvignon and Merlot); images of Chile are of Aconcagua Valley (Cabernet Sauvignon, Merlot); in Brazil, data for all varieties are from the Serra do Sudeste region. All spectra are expressed in reflectance values, across the nine spectral bands of VNIR (Visible and Near Infrared) and SWIR (Shot Wave Infrared), which are ASTER detection subsystems. Corrections for atmospheric absorption are applied. It is assumed that vine leaves are the dominant source of radiance. Spectra and NDVI for each variety, for every terroir, are generated. Results are: a) spectra of Cabernet Sauvignon and Merlot are similar to each other, over all regions; b) Pinot Noir and Chardonnay also have similar, characteristic spectra; c) spectra from later stages in the phenological cycle tend to have smaller reflectances; d) for each variety, the characteristic spectra has a stable configuration, even when measured in different terroirs and at different epochs; e) NDVI values confirm the two-by-two grouping of varieties. It is concluded that, despite large differences in terroir, spectral features of each one of the studied varieties are conserved.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Gisele CEMIN, Jorge Ricardo DUCATI

Centro Estadual de Pesquisas em Sensoriamento Remoto e Meteorologia
Universidade Federal do Rio Grande do Sul
Av. Bento Gonçalves 9500 – CEP 91501-970
Porto Alegre, Brazil

Contact the author

Keywords

remote sensing, spectral signatures, satellite images, terroirs

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Aroma chemical profiles characterization of wines produced with moristel grapes harvested at different time points

The wine aroma is constituted by hundred of volatile chemical compounds that depend on many viticultural and oenological factors.

A global and regional study on winegrowers’ perceptions and adaptations to climate change

Aim: The aim of this study was to explore the current and future state of the wine sector in the context of climate change, where the goal was to obtain greater understanding on winegrowers’ perceptions and adaptations to a changing climate and its associated impacts. The study sought to provide both a global and regional perspective on these issues.

Optimized grape seed protein extraction for wine fining

The extraction of proteins from grape seeds represents a promising strategy to revalorize wine industry by-products. As a natural endogenous fining agent, grape seed protein (GSE) offers an effective solution for wine clarification [1] without requiring label declaration.

Study of the sensory dimension of the wine typicality related to a terroir and crossing with their viticultural and oenological characteristics

The typicality of a product can be characterized by properties of similarity in relation to a type, but also by the properties of distinction.

Evaluation of the composition of pomace from grapes grown in the slopes of the Popocatépetl volcano (Puebla, Mexico). Feasibility of its application for obtaining functional foods

Grape pomace is the main byproduct generated during wine production and is primarily composed of skins and seeds, which are obtained after the pressing stage [1]. This byproduct retains a significant amount of nutrients, such as fiber, phenolic compounds, unsaturated fatty acids, vitamins, and minerals.