Terroir 2008 banner
IVES 9 IVES Conference Series 9 On the stability of spectral features of four vine varieties in Brazil, Chile and France

On the stability of spectral features of four vine varieties in Brazil, Chile and France

Abstract

Satellite images of vineyards in France, Chile, and Brazil are used to study spectral differences between the vine varieties Cabernet Sauvignon, Merlot, Pinot Noir, and Chardonnay, to verify if features of a given variety are conserved at vineyards in completely different terroirs. Data are eight images from ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) orbital sensor, for years 2000, 2001, 2002, 2004, and 2006. Additional information is from maps of properties, field surveys and GPS measurements. In France, data is from the Champagne region (Pinot Noir and Chardonnay), and Bordeaux (Cabernet Sauvignon and Merlot); images of Chile are of Aconcagua Valley (Cabernet Sauvignon, Merlot); in Brazil, data for all varieties are from the Serra do Sudeste region. All spectra are expressed in reflectance values, across the nine spectral bands of VNIR (Visible and Near Infrared) and SWIR (Shot Wave Infrared), which are ASTER detection subsystems. Corrections for atmospheric absorption are applied. It is assumed that vine leaves are the dominant source of radiance. Spectra and NDVI for each variety, for every terroir, are generated. Results are: a) spectra of Cabernet Sauvignon and Merlot are similar to each other, over all regions; b) Pinot Noir and Chardonnay also have similar, characteristic spectra; c) spectra from later stages in the phenological cycle tend to have smaller reflectances; d) for each variety, the characteristic spectra has a stable configuration, even when measured in different terroirs and at different epochs; e) NDVI values confirm the two-by-two grouping of varieties. It is concluded that, despite large differences in terroir, spectral features of each one of the studied varieties are conserved.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Gisele CEMIN, Jorge Ricardo DUCATI

Centro Estadual de Pesquisas em Sensoriamento Remoto e Meteorologia
Universidade Federal do Rio Grande do Sul
Av. Bento Gonçalves 9500 – CEP 91501-970
Porto Alegre, Brazil

Contact the author

Keywords

remote sensing, spectral signatures, satellite images, terroirs

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Unveiling the Grapevine Red Blotch Virus (GRBV) host-pathogen arms-race via multi-omics for enhanced viral defense 

The Grapevine Red Blotch Virus (GRBV) poses a critical challenge to the wine sector, lacking a uniquely identified vector. Current control methods involve costly and labor-intensive vine removal, emphasizing the urgency for targeted alternatives. The limited understanding of intricate host-virus interactions underscores the need for foundational knowledge to develop innovative disease control strategies. These include efforts to boost the plant’s RNA interference (RNAi) response, including RNA-based topical applications.

Flanan-3-ol compositional changes in red grape berries (Vitis vinifera L. cv Cabernet franc) from two terroirs of the Loire Valley (France)

La quantité et la qualité des flavonoïdes sont des éléments importants de la qualité de la baie. En particulier, les tannins contribuent de manière essentielle aux propriétés spécifiques des vins rouges telles que la couleur, l’astringence et l’amertume. Cependant, leur synthèse et leurs propriétés sont encore mal connues. Ainsi, la

Evaluation of Saccharomyces cerevisiae strains from honey by-products by their performance as starters in the wine industry

AIM: Recent studies on yeast ecology of non-oenological niches have highlighted the ability of some Saccharomyces cerevisiae yeasts to ferment grape must [1]

Influence of dehydration and maceration conditions on VOCs composition and olfactory profile of Moscato Bianco passito sweet wine

Among the Vitis vinifera L. cv. Moscato, Moscato Bianco is the oldest and most cultivated one in Europe (1). According to the OIV Focus 2015, Italy is the country with the largest cultivated area of Moscato Bianco with about 12500 hectares (2), that is used to produce well-known wines (i.e., Moscato Passito in Piedmont, Moscato di Trani in Puglia, and Moscatello di Montalcino in Tuscany), mainly obtained from partially dehydrated grapes (1). Different dehydration techniques can strongly modify the chemical compounds of oenological interest, among which Volatile Organic Compounds (VOCs) (1) that are the main responsible for the varietal sensory character of the final wine.

Investigation of cellulose nanofiber-based films used as a protective layer to reduce absorption of smoke phenols into wine grapes

Volatile phenols from wildfire smoke are absorbed by wine grapes, resulting in undesirable smoky and ashy sensory attributes in the affected wine.[1] Unfortunately the severity of wildfires is increasing, particularly when grapes are ripening on the vine. The unwanted flavors of the wine prompted a need for solutions to prevent the uptake of smoke compounds into wine grapes. Films using cellulose nanofibers as the coating forming matrix were developed as an innovative means to prevent smoke phenols from entering Pinot noir grapes. Different film formulations were tested by incorporating low methoxy pectin or chitosan.