Terroir 2008 banner
IVES 9 IVES Conference Series 9 On the stability of spectral features of four vine varieties in Brazil, Chile and France

On the stability of spectral features of four vine varieties in Brazil, Chile and France

Abstract

Satellite images of vineyards in France, Chile, and Brazil are used to study spectral differences between the vine varieties Cabernet Sauvignon, Merlot, Pinot Noir, and Chardonnay, to verify if features of a given variety are conserved at vineyards in completely different terroirs. Data are eight images from ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) orbital sensor, for years 2000, 2001, 2002, 2004, and 2006. Additional information is from maps of properties, field surveys and GPS measurements. In France, data is from the Champagne region (Pinot Noir and Chardonnay), and Bordeaux (Cabernet Sauvignon and Merlot); images of Chile are of Aconcagua Valley (Cabernet Sauvignon, Merlot); in Brazil, data for all varieties are from the Serra do Sudeste region. All spectra are expressed in reflectance values, across the nine spectral bands of VNIR (Visible and Near Infrared) and SWIR (Shot Wave Infrared), which are ASTER detection subsystems. Corrections for atmospheric absorption are applied. It is assumed that vine leaves are the dominant source of radiance. Spectra and NDVI for each variety, for every terroir, are generated. Results are: a) spectra of Cabernet Sauvignon and Merlot are similar to each other, over all regions; b) Pinot Noir and Chardonnay also have similar, characteristic spectra; c) spectra from later stages in the phenological cycle tend to have smaller reflectances; d) for each variety, the characteristic spectra has a stable configuration, even when measured in different terroirs and at different epochs; e) NDVI values confirm the two-by-two grouping of varieties. It is concluded that, despite large differences in terroir, spectral features of each one of the studied varieties are conserved.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Gisele CEMIN, Jorge Ricardo DUCATI

Centro Estadual de Pesquisas em Sensoriamento Remoto e Meteorologia
Universidade Federal do Rio Grande do Sul
Av. Bento Gonçalves 9500 – CEP 91501-970
Porto Alegre, Brazil

Contact the author

Keywords

remote sensing, spectral signatures, satellite images, terroirs

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Comportement phénologique et végétatif de la cv “Italia” en rapport an climat dans les deux zones typiques de viticulture de table en Sicile

Le travail a le but de contribuer à faire connaître l’influence du milieu, en particulier le climat, sur l’expression génétique de la variété Italia en Sicile.
L’etude a étè effectué durant six années, du 1992 au 1997

Metodología para la zonificación de áreas vitícolas: aplicación en un area modelo del Penedés

Se propone una metodología para la zonificación del viñedo, a partir de las características climáticas, edáficas y geomorfológicas, en una área de 3700 ha del Penedés

The myth of the universal rootstock revisited: assessment of the importance of interactions between scion and rootstock

Aim‐ Rootstocks provide protection against soil borne pests and are a powerful tool to manipulate growth, fruit composition and wine quality attributes

Wine growing terroirs: management of potential. New issues at stake for AOCs in France

Terroirs represent a heritage that must be studied and managed with appropriate methods; recourse to agronomic and oenological sciences alone is necessary, but is in no way sufficient without the contribution of the humanities.

Defining gene regulation and co-regulation at single cell resolution in grapevine

Conventional molecular analyses provide bulk genomic/transcriptomic data that are unable to reveal the cellular heterogeneity and to precisely define how gene networks orchestrate organ development. We will profile gene expression and identify open chromatin regions at the individual cells level, allowing to define cell-type specific regulatory elements, developmental trajectories and transcriptional networks orchestrating organ development and function. We will perform scRNA-seq and snATAC-seq on leaf/berry protoplasts and nuclei and combine them with the leaf/berry bulk tissues obtained results, where the analysis of transcripts, chromatin accessibility, histone modification and transcription factor binding sites showed that a large fraction of phenotypic variation appears to be determined by regulatory rather than coding variation and that many variants have an organ-specific effect.