Terroir 2008 banner
IVES 9 IVES Conference Series 9 Viticultural agroclimatic cartography and zoning at mesoscale level using terrain information, remotely sensed data and weather station measurements. Case study of Bordeaux winegrowing area

Viticultural agroclimatic cartography and zoning at mesoscale level using terrain information, remotely sensed data and weather station measurements. Case study of Bordeaux winegrowing area

Abstract

Climate is a key variable for grapevine development and berry ripening processes. At mesoscale level, climate spatial variations are often determined empirically, as weather station networks are generally not dense enough to account for local climate variations.
In this study, climate spatial variations of Bordeaux winegrowing area were assessed by means of solar radiation cartography using satellite sensing and Digital Elevation Model (DEM) information, daily temperature interpolation using weather station and terrain information, spatialized rainfall using rain gauge data and kriging techniques. Temperature and solar radiation data were used to generate evapotranspiration maps at daily time step. Spatialized data was used to characterize the production potential of several zones of Bordeaux winegrowing areas, according to their agroclimatic characteristics.
Temperature differences within Bordeaux vineyards induce considerable discrepancies in vine phenology, as is shown by means of a degree.day model. Solar radiation data and potential evapotranspiration are mostly governed by terrain characteristics (slope and aspect). Rainfall data spatial patterns indicate that the north-western part of Bordeaux vineyards is recurrently drier and the south-western receives higher rainfall amounts during the grapevine growing season. However, spatial distribution of summer rainfall events changes considerably from one year to another.
The results of this study offer useful information to adapt grapevine cultivars and vineyard management to local climate.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Benjamin BOIS (1), Cornelis VAN LEEUWEN (2,3), Philippe PIERI (2), Jean-Pierre GAUDILLERE (2), Etienne SAUR (3,4), Daniel JOLY (5), Lucien WALD (6), Didier GRIMAL (7).

(1) Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, 1, rue Claude Ladrey, BP 27877, 21078 Dijon, France
(2) UMR EGFV, ISVV, INRA, Université Bordeaux 2, BP 81, 33883 Villenave d’Ornon Cedex, France
(3) Ecole Nationale d’Ingénieurs des Travaux Agricoles de Bordeaux, 1 cours du Général de Gaulle, 33175 Gradignan Cedex, France
(4) UMR TCEM, INRA, Université Bordeaux 1, BP 81, 33883 Villenave d’Ornon Cedex, France
(5) UMR ThéMA, CNRS, Université de Franche-Comté, 32, rue Mégevand, 25030 Besançon Cedex, France
(6) CEP, Ecole de Mines de Paris, BP 207, F-06904 Sophia Antipolis Cedex, France
(7) Météo-France, DIRSO, Centre de Mérignac, 7, avenue Roland Garros 33692 MERIGNAC Cedex, France

Contact the author

Keywords

Climat, Zonage, Bordeaux, SIG, Vigne

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

A combination of biotechnology tools and coopers elements for an alternative the addition of SO2 at the end of the malolactic fermentation in red wines or at the “mutage” for the “liquoreux” wines

In red wines the post-MLF SO2 addition is an essential event. It is also the case for the “mutage” during the elaboration of the “liquoreux”. At these moments SO2 plays an antimicrobial action and an antioxidant effect. But at current pH of wines, ensuring a powerful molecular SO2 has become very difficult. Recent work on Brettanomyces strains have also shown that some strains are resistant up to 1.2 mg / L of molecular SO2. It’s also the case of the some Saccharomuces or Zygosaccharomyces strains suitable to re-ferment “liquoreux” wines after the “mutage”.

Guyot or pergola for dehydration of Rondinella grape

Pergola veronese is the most important vine training system in Valpolicella area but Guyot in the last decades is diffusing. Rondinella is one of the three most important varieties

Vineyard yield estimation using image analysis: assessing bunch occlusions and its dependency on fruiting zone canopy features

Performing accurate vineyard yield estimation is of upmost importance as it provides important benefits to the whole vine and wine industry. Recently, image-analysis approaches have been explored to address this issue however this approach has as main challenge the bunch occlusion, mostly by vegetation but also by neighboring bunches. The present work aims at assessing the magnitude of bunch occlusion by neighboring bunches and to evaluate its dependency on a selection of vegetative and reproductive vine parameters assessed at fruiting zone. Forty vine segments (1 m) of two vineyard plots of the white cultivars ‘Alvarinho’ and ‘Arinto’ were assessed for vegetative and reproductive features at fruiting zone and imaged with a 2D camera.

Monitoring of microbial biomass to characterise vineyard soils

Le sol est un facteur important permettant la croissance de la vigne. Les propriétés physiques et chimiques, mais aussi microbiologiques ont une influence sur beaucoup des fonctions du sol comme la structure, le drainage, la fertilité, déterminant la vigueur des plantes et le potentiel œnologique des raisins.

Terroir in Slovak viticulture area

Terroir method has been used for assessment of growing site in the world for years. In Slovakia actually regionalisation is used as the similar method which does not cover all the elements of wine quality evaluation however.