Terroir 2008 banner
IVES 9 IVES Conference Series 9 Viticultural agroclimatic cartography and zoning at mesoscale level using terrain information, remotely sensed data and weather station measurements. Case study of Bordeaux winegrowing area

Viticultural agroclimatic cartography and zoning at mesoscale level using terrain information, remotely sensed data and weather station measurements. Case study of Bordeaux winegrowing area

Abstract

Climate is a key variable for grapevine development and berry ripening processes. At mesoscale level, climate spatial variations are often determined empirically, as weather station networks are generally not dense enough to account for local climate variations.
In this study, climate spatial variations of Bordeaux winegrowing area were assessed by means of solar radiation cartography using satellite sensing and Digital Elevation Model (DEM) information, daily temperature interpolation using weather station and terrain information, spatialized rainfall using rain gauge data and kriging techniques. Temperature and solar radiation data were used to generate evapotranspiration maps at daily time step. Spatialized data was used to characterize the production potential of several zones of Bordeaux winegrowing areas, according to their agroclimatic characteristics.
Temperature differences within Bordeaux vineyards induce considerable discrepancies in vine phenology, as is shown by means of a degree.day model. Solar radiation data and potential evapotranspiration are mostly governed by terrain characteristics (slope and aspect). Rainfall data spatial patterns indicate that the north-western part of Bordeaux vineyards is recurrently drier and the south-western receives higher rainfall amounts during the grapevine growing season. However, spatial distribution of summer rainfall events changes considerably from one year to another.
The results of this study offer useful information to adapt grapevine cultivars and vineyard management to local climate.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Benjamin BOIS (1), Cornelis VAN LEEUWEN (2,3), Philippe PIERI (2), Jean-Pierre GAUDILLERE (2), Etienne SAUR (3,4), Daniel JOLY (5), Lucien WALD (6), Didier GRIMAL (7).

(1) Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, 1, rue Claude Ladrey, BP 27877, 21078 Dijon, France
(2) UMR EGFV, ISVV, INRA, Université Bordeaux 2, BP 81, 33883 Villenave d’Ornon Cedex, France
(3) Ecole Nationale d’Ingénieurs des Travaux Agricoles de Bordeaux, 1 cours du Général de Gaulle, 33175 Gradignan Cedex, France
(4) UMR TCEM, INRA, Université Bordeaux 1, BP 81, 33883 Villenave d’Ornon Cedex, France
(5) UMR ThéMA, CNRS, Université de Franche-Comté, 32, rue Mégevand, 25030 Besançon Cedex, France
(6) CEP, Ecole de Mines de Paris, BP 207, F-06904 Sophia Antipolis Cedex, France
(7) Météo-France, DIRSO, Centre de Mérignac, 7, avenue Roland Garros 33692 MERIGNAC Cedex, France

Contact the author

Keywords

Climat, Zonage, Bordeaux, SIG, Vigne

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Global warming effects on grape growing climate zones within the Rioja Appllation (DOCa Rioja) in north Spain

Aims: The aims of this work were (1) to assess the changes in some of the main bioclimatic indices used for climate viticultural zoning within the Rioja Appellation area in the north of Spain between 1950-2014 (60 years), and (2) to carry out a comprehensive sociological evaluation among grapegrowers and winemakers of this region, to better understand the impact of climate change on their activity, their degree of concern about it and the potential adaptation measures they would be willing to adopt to cope with it in future years.

Effect of row direction in the upper part of the hillside vineyard of Somló, Hungary

Hillside vineyards have a great potential to produce world class wines. The unique microclimate lead to the production of rich, flavory wines.

Effects of management and seed mixture on species composition of vineyard inter-row vegetation, soil characteristics and grape berry traits

Context and purpose. Viticulture has exerted a profound influence on the landscape and biodiversity of numerous countries for centuries.

Effect of concentration and competition between different fungicide residues on the adsorption efficiency of activated vegetal fibres for treatment of wine

Vineyards are strongly exposed to fungal diseases, attacks from insects and competition with weeds. Most treatments used on grape vines contain synthetic active substances, which may be transferred to the wine. Such pesticides have a negative image because many active substances are potential health hazards. A specific oenological treatment allowing the reduction of pesticide residues in wine based on activated vegetable fibres (AVF) is under examination by the International Organisation for Vine and Wine. This technique works efficiently and alters the wine only little (Lempereur et al. 2014).

Scientific research for an «Ad Maiora 4.1C» application «A step back towards the future universally sustainable EME4.1C». A concrete example of forward-looking and revolutionary entrepreneurial choices in the vine and wine sector

In 1979 an enlightened and farsighted business owner in an area and in an activity unknown to him and in 120 hectares of land cultivated with corn and wheat expressed to one of us that he wanted to start a business in the wine sector. The first innovative “Vigna Dogarina Scientific Applicative Project” has become famous and harmoniously inserted in and with the “Territoir” of eastern Veneto in northeastern Italy. The revolutionary project allowed one of us: 1. to put into practice results of research related to the applied philosophy, vision, methodology of the “Great MetaEthic Chain 4.1C®” algorithm of the “Conegliano Campus 5.1C®” that considers all material, immaterial, spiritual, technical, economic, environmental, social, existential, relational, ethical, MetaEthical factors with basic indexing in a harmonious chain “ 4.1C®” and application “5.1C®”, 2. to implement: