Terroir 2008 banner
IVES 9 IVES Conference Series 9 Viticultural agroclimatic cartography and zoning at mesoscale level using terrain information, remotely sensed data and weather station measurements. Case study of Bordeaux winegrowing area

Viticultural agroclimatic cartography and zoning at mesoscale level using terrain information, remotely sensed data and weather station measurements. Case study of Bordeaux winegrowing area

Abstract

Climate is a key variable for grapevine development and berry ripening processes. At mesoscale level, climate spatial variations are often determined empirically, as weather station networks are generally not dense enough to account for local climate variations.
In this study, climate spatial variations of Bordeaux winegrowing area were assessed by means of solar radiation cartography using satellite sensing and Digital Elevation Model (DEM) information, daily temperature interpolation using weather station and terrain information, spatialized rainfall using rain gauge data and kriging techniques. Temperature and solar radiation data were used to generate evapotranspiration maps at daily time step. Spatialized data was used to characterize the production potential of several zones of Bordeaux winegrowing areas, according to their agroclimatic characteristics.
Temperature differences within Bordeaux vineyards induce considerable discrepancies in vine phenology, as is shown by means of a degree.day model. Solar radiation data and potential evapotranspiration are mostly governed by terrain characteristics (slope and aspect). Rainfall data spatial patterns indicate that the north-western part of Bordeaux vineyards is recurrently drier and the south-western receives higher rainfall amounts during the grapevine growing season. However, spatial distribution of summer rainfall events changes considerably from one year to another.
The results of this study offer useful information to adapt grapevine cultivars and vineyard management to local climate.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Benjamin BOIS (1), Cornelis VAN LEEUWEN (2,3), Philippe PIERI (2), Jean-Pierre GAUDILLERE (2), Etienne SAUR (3,4), Daniel JOLY (5), Lucien WALD (6), Didier GRIMAL (7).

(1) Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, 1, rue Claude Ladrey, BP 27877, 21078 Dijon, France
(2) UMR EGFV, ISVV, INRA, Université Bordeaux 2, BP 81, 33883 Villenave d’Ornon Cedex, France
(3) Ecole Nationale d’Ingénieurs des Travaux Agricoles de Bordeaux, 1 cours du Général de Gaulle, 33175 Gradignan Cedex, France
(4) UMR TCEM, INRA, Université Bordeaux 1, BP 81, 33883 Villenave d’Ornon Cedex, France
(5) UMR ThéMA, CNRS, Université de Franche-Comté, 32, rue Mégevand, 25030 Besançon Cedex, France
(6) CEP, Ecole de Mines de Paris, BP 207, F-06904 Sophia Antipolis Cedex, France
(7) Météo-France, DIRSO, Centre de Mérignac, 7, avenue Roland Garros 33692 MERIGNAC Cedex, France

Contact the author

Keywords

Climat, Zonage, Bordeaux, SIG, Vigne

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Study of the content of amino acids and biogenic amines in sparkling red wines

The production of red sparkling wines is lower in Spain in comparison with the winemaking of white or rosé sparkling wines. In red sparkling wine processing it is essential to obtain suitable base wines that should have moderate alcohol content, high acidity, good color values, an adequate mouth-feel and a sweet tannin. Grapes for sparkling wine production have to be harvested at low maturity stages, with lower alcohol contents and higher acidities, which will that the phenolic maturity of the grapes is also low, showing green tannins. This paper analyses different treatments in order to minimize these inconveniences: cold maceration-prefermentation and delestage to elaborate the grapes with lower maturity, must nanofiltration, and the partial osmosis of the wines made from grapes with an adequate maturity degree.

A blueprint for managing vine physiological balance at different spatial and temporal scales in Champagne

In Champagne, the vine adaptation to different climatic and technical changes during these last 20 years can be seen through physiological balance disruptions. These disruptions emphasize the general grapevine decline. Since the 2000s, among other nitrogen stress indicators, the must nitrogen has been decreasing. The combination of restricted mineral fertilizers and herbicide use, the growing variability of spring rainfall, the increasing thermal stress as well as the soil type heterogeneity are only a few underlying factors that trigger loss of physiological balance in the vineyards. It is important to weigh and quantify the impact of these factors on the vine. In order to do so, the Comité Champagne uses two key-tools: networking and modelization. The use of quantitative and harmonized ecophysiological indicators is necessary, especially in large spatial scales such as the Champagne appellation. A working group with different professional structures of Champagne has been launched by the Comité Champagne in order to create a common ecophysiology protocol and thus monitor the vine physiology, yearly, around 100 plots, with various cultural practices and types of soil. The use of crop modelling to follow the vine physiological balance within different pedoclimatic conditions enables to understand the present balance but also predict the possible disruptions to come in future climatic scenarios. The physiological references created each year through the working group, benefit the calibration of the STICS model used in Champagne. In return, the model delivers ecophysiology indicators, on a daily scale and can be used on very different types of soils. This study will present the bottom-up method used to give accurate information on the impacts of soil, climate and cultural practices on vine physiology.

Coping with extreme climatic events: some lessons from recent work on grapevine under heat peak

Climate change critically challenges viticulture. Among other threats, extreme and increasingly frequent heatwaves cause irreversible burns on leaves and bunches. A series of observations and experiments was conducted to better understand how leaf burns originate and whether genetics or management practices can mitigate them. In 2019, a panel of 279 potted cultivars of Vitis vinifera L. grown outdoors suffered a heat peak and a genetic origin of leaf burn variability was demonstrated. To deeper explore this variability, fourteen cultivars were selected for their contrasting responses to high temperatures, and detached leaves were submitted to a controlled increase in temperature up to 50 °C in a growth chamber.

Les préparations biodynamiques 500 et 501 ont elles un effet sur la vigne ?

Dans le cadre de TerclimPro 2025, Markus Rienth a présenté un article IVES Technical Reviews. Retrouvez la présentation ci-dessous ainsi que l’article associé : https://ives-technicalreviews.eu/article/view/8396

EFFECTIVENESS OF APPLIED MATERIALS IN REDUCING THE ABSORPTION OF SMOKE MARKER COMPOUNDS IN A SIMULATED WILDFIRE SCENARIO

Smoke taint (ST) is a grape-wine off-flavour that may occur when grapes absorb volatile phenols (VPs) originating from wildfire smoke (1). ST is associated with the negative sensory attributes such as smoky and ashy notes. VPs are glycosylated in the plant and thus present in both free and bound forms (2; 3). Wildfire smoke has resulted in a decline in grape and wine quality and financial losses which has become a prominent issue for the global wine industry.