Terroir 2008 banner
IVES 9 IVES Conference Series 9 Contribution to the sensory and volatile characterization of four traditional Galician red varieties

Contribution to the sensory and volatile characterization of four traditional Galician red varieties

Abstract

Galicia, a region sited in the northwest of Spain, is one of the most important wine production area, with five Appellations of Origin Controlled (AOC). In the last few years, there is a growing interest within the Galician winemaking industry in the recuperation of the denominated traditional or noble varieties, in order to endow differentiated and singular characteristics to the Galician red and white wines. Caiño is the name of some minor red Vitis grown in this region. This general name involves a group of red autochthonous cultivars, including Caiño Redondo, Caiño da Terra, Caiño Longo and Caiño Astureses, each of them with different characteristics.
The quality of these grapes is appreciated in winemaking but the majority of Caiño wines are elaborated blended with other varieties of Galician grapes (Mencia, Souson, Garnacha), because pure red Caiño wines present a high acidity that requires blending to balance them. Considerable research and development on the viticulture and enology of these varieties are still necessary, in particular in relation to the chemical aroma composition and the sensory properties of the corresponding wines.
In the present communication we contribute with the study of the aroma composition to a better understanding of the wines obtained exclusively from the four cultivars with the name Caiño. The other aim of this study was to establish the aromatic profile, in terms of attributes, that identifies the aroma of young wines from Caiño Redondo, Caiño da Terra, Caiño Longo and Caiño Astureses cultivars

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Sandra CORTÉS DIÉGUEZ, Susana RÍO SEGADE, Francisco REGO MARTÍNEZ and Emilia DÍAZ LOSADA

Estación de Viticultura e Enoloxía de Galicia (EVEGA). Ponte San Clodio s/n, Leiro, 32427, Ourense, España

Contact the author

Keywords

Red wines, Sensory analysis, Volatile compounds

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Description of the effect of the practical management in the characterization of « terroir effect »

The characterization of « the soil effect » in vine growing is often limited to the description of the physical components of the terroir. Many works were done in this direction and corresponded to geological, pedological or agronomical approaches. However, if the physical environment influences the vine and its grapes, its effect becomes limited at the scale of exploitation. Thus, it could be important to consider how the viticulturist « translated » the potential.

The Shield4Grape project to improve the sustainability of European viticulture

Grapevine (vitis spp.) Is one of the major and most economically important fruit crops worldwide. Unlike other cropping systems, viticulture has ancient historical connections with the development of human culture and with the socio-cultural background of grape-growing areas. The vitis genus is characterised by high levels of genetic diversity, as result of natural genetic mutations, which are common in grapevines and further assisted by ongoing vegetative propagation.

The effect of ultrasounds in syrah wine quality is not dependent on the ripening or sanitary status of the grapes

Different studies have demonstrated that the application of ultrasounds (US) to crushed grapes improves chromatic characteristics of the wines (1,2), increases their polysaccharide content (3) and some aroma compounds are also favored (4,5)

Frost risk projections in a changing climate are highly sensitive in time and space to frost modelling approaches

Late spring frost is a major challenge for various winegrowing regions across the world, its occurrence often leading to important yield losses and/or plant failure. Despite a significant increase in minimum temperatures worldwide, the spatial and temporal evolution of spring frost risk under a warmer climate remains largely uncertain. Recent projections of spring frost risk for viticulture in Europe throughout the 21st century show that its evolution strongly depends on the model approach used to simulate budburst. Furthermore, the frost damage modelling methods used in these projections are usually not assessed through comparison to field observations and/or frost damage reports.
The present study aims at comparing frost risk projections simulated using six spring frost models based on two approaches: a) models considering a fixed damage threshold after the predicted budburst date (e.g BRIN, Smoothed-Utah, Growing Degree Days, Fenovitis) and b) models considering a dynamic frost sensitivity threshold based on the predicted grapevine winter/spring dehardening process (e.g. Ferguson model). The capability of each model to simulate an actual frost event for the Vitis vinifera cv. Chadonnay B was previously assessed by comparing simulated cold thermal stress to reports of events with frost damage in Chablis, the northernmost winegrowing region of Burgundy. Models exhibited scores of κ > 0.65 when reproducing the frost/non-frost damage years and an accuracy ranging from 0.82 to 0.90.
Spring frost risk projections throughout the 21st century were performed for all winegrowing subregions of Bourgogne-Franche-Comté under two CMIP5 concentration pathways (4.5 and 8.5) using statistically downscaled 8×8 km daily air temperature and humidity of 13 climate models. Contrasting results with region-specific spring frost risk trends were observed. Three out of five models show a decrease in the frequency of frost years across the whole study area while the other two show an increase that is more or less pronounced depending on winegrowing subregion. Our findings indicate that the lack of accuracy in grapevine budburst and dehardening models makes climate projections of spring frost risk highly uncertain for grapevine cultivation regions.

Adsorption capacity of phenolics compounds by polyaniline materials in model solution

The aim of this work was to study the trapping capacity of four polyaniline polymers towards phenolic compounds in wine-like model solutions. METHODS: The model wine solution was composed of 12% (v/v) and 4 g/L of tartaric acid adjusted to pH = 3.6. A series of centrifuge tubes (15 mL) were filled with 10 mL of model solution enriched with 50 mg/L of five phenolic compounds (i.e., Gallic acid, caffeic acid, (+)-catechin, (-)-epicatechin, and rutin), and treated with different doses of PANI polymer (i.e., 0, 2, 4 and 8 g/L). After the addition of the polymer, the samples were stirred using a platform shaker at room temperature (20 ºC) for 2, 8, 16 and 24 h. All treatments included three replications.