Terroir 2008 banner
IVES 9 IVES Conference Series 9 Contribution to the sensory and volatile characterization of four traditional Galician red varieties

Contribution to the sensory and volatile characterization of four traditional Galician red varieties

Abstract

Galicia, a region sited in the northwest of Spain, is one of the most important wine production area, with five Appellations of Origin Controlled (AOC). In the last few years, there is a growing interest within the Galician winemaking industry in the recuperation of the denominated traditional or noble varieties, in order to endow differentiated and singular characteristics to the Galician red and white wines. Caiño is the name of some minor red Vitis grown in this region. This general name involves a group of red autochthonous cultivars, including Caiño Redondo, Caiño da Terra, Caiño Longo and Caiño Astureses, each of them with different characteristics.
The quality of these grapes is appreciated in winemaking but the majority of Caiño wines are elaborated blended with other varieties of Galician grapes (Mencia, Souson, Garnacha), because pure red Caiño wines present a high acidity that requires blending to balance them. Considerable research and development on the viticulture and enology of these varieties are still necessary, in particular in relation to the chemical aroma composition and the sensory properties of the corresponding wines.
In the present communication we contribute with the study of the aroma composition to a better understanding of the wines obtained exclusively from the four cultivars with the name Caiño. The other aim of this study was to establish the aromatic profile, in terms of attributes, that identifies the aroma of young wines from Caiño Redondo, Caiño da Terra, Caiño Longo and Caiño Astureses cultivars

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Sandra CORTÉS DIÉGUEZ, Susana RÍO SEGADE, Francisco REGO MARTÍNEZ and Emilia DÍAZ LOSADA

Estación de Viticultura e Enoloxía de Galicia (EVEGA). Ponte San Clodio s/n, Leiro, 32427, Ourense, España

Contact the author

Keywords

Red wines, Sensory analysis, Volatile compounds

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Differential gene expression and novel gene models in 110 Richter uncovered through RNA Sequencing of roots under stress

The appearance of the Phylloxera pest in the 19th century in Europe caused dramatical damages in grapevine diversity. To mitigate these losses, grapevine growers resorted to using crosses of different Vitis species, such as 110 Richter (110R) (V. berlandieri x V. rupestris), which has been invaluable for studying adaptations to stress responses in vineyards. Recently, a high quality chromosome scale assembly of 110R was released, but the available gene models were predicted without using as evidence transcriptional sequences obtained from roots, that are crucial organs in rootstock, and they may express certain genes exclusively. Therefore, we employed RNA sequencing reads of 110R roots under different stress conditions to predict new gene models in each haplotype of 110R under different stresses.

Enhancing vineyard resilience: three years of weather-based disease modeling in Moldova’s precision viticulture

Due to ongoing climate change, managing vineyard diseases has become increasingly challenging in the Republic of Moldova.

AGEING BOTTLED WINES SUBMERGED IN SEA: DOES IT IMPACT WINE COMPOSITION?

Aging wines is a common practice in oenology, which in recent years has undergone some innovations. Currently, we are witnessing the practice of aging bottled wine in depth, immersed in the sea or in reservoirs, for variable periods of time, but so far, little is known about the impact of aging in depth on the physicochemical properties, of wines.
The objective of this work was to evaluate the impact of this practice on the physicochemical characteristics, in particular to verify changes in the volatile composition of wines bottled and subsequently immersed in depth. A red wine from Cabernet Sauvignon was bottled and a set of bottles were submerged from July to February (2020), another set of bottles were submerged from February to September (2020) and another set was kept in the wine cellar. Bottles from each set were analyzed (in triplicate) in July 2021.

Late season canopy management practices to reduce sugar loading and improve color profile of Cabernet-Sauvignon grapes and wines in the high irradiance and hot conditions of California Central Valley

Global warming is accelerating grape ripening, leading to unbalanced wines from fruit with high sugar content but poor aroma and colour development. Reducing the size of the photosynthetic apparatus after veraison has been shown to delay technological ripeness in cool climates, but methods have not been tested in areas with high irradiance and temperature where fruit exposure could have disastrous effects on berry composition. In this Cabernet-Sauvignon trial, we compared the application of an antitranspirant (pinolene), to severe canopy topping and above bunch zone leaf removal, all performed at mid-ripening, with an untouched control. We monitored the vines weekly by measuring stem water potential, gas exchange, fruit zone light exposure. We sampled berries to measure berry weight, total soluble solids, pH, titratable acidity, and the anthocyanin profile. At harvest, we assessed yield components, measured carbon isotope discrimination, rated sunburn on clusters, and produced experimental wines. We submitted harvest samples to metabolomic profiling through PFP-Q Exactive MS/MS and wines to sensory analysis. Application of the antitranspirant significantly reduced stomatal conductance and assimilation rate but did not affect the stem water potential. Inversely, leaf removal and topping increased water potential but did not affect leaf gas exchange. The late topping was the only treatment able to decrease sugar content (up to 2Bx), increase titratable acidity and pH, and improve anthocyanin content because of lower degradation of di-hydroxylated forms. Late leaf removal above the bunch zone increased lightning conditions in the canopy and produced the most significant damage on fruits. Yield components were not affected. This work suggests that late-season canopy management can effectively control ripening speeds and improve grapes and wines. Still, the effect on grape exposure in a critical time must be well balanced to avoid problems with the appropriate technique.

Rapporti tra diverse tipologie di terreno e risposte produttive e qualitative delle uve Merlot e Carmenère nell’area DOC Piave

Da anni la ricerca viticola sta orientando le sue attenzioni verso lo studio della vocazionalità degli ecosistemi viticoli, perché fulcro della produttività della vite e qualità dei suoi frutti.