Terroir 2008 banner
IVES 9 IVES Conference Series 9 Contribution to the sensory and volatile characterization of four traditional Galician red varieties

Contribution to the sensory and volatile characterization of four traditional Galician red varieties

Abstract

Galicia, a region sited in the northwest of Spain, is one of the most important wine production area, with five Appellations of Origin Controlled (AOC). In the last few years, there is a growing interest within the Galician winemaking industry in the recuperation of the denominated traditional or noble varieties, in order to endow differentiated and singular characteristics to the Galician red and white wines. Caiño is the name of some minor red Vitis grown in this region. This general name involves a group of red autochthonous cultivars, including Caiño Redondo, Caiño da Terra, Caiño Longo and Caiño Astureses, each of them with different characteristics.
The quality of these grapes is appreciated in winemaking but the majority of Caiño wines are elaborated blended with other varieties of Galician grapes (Mencia, Souson, Garnacha), because pure red Caiño wines present a high acidity that requires blending to balance them. Considerable research and development on the viticulture and enology of these varieties are still necessary, in particular in relation to the chemical aroma composition and the sensory properties of the corresponding wines.
In the present communication we contribute with the study of the aroma composition to a better understanding of the wines obtained exclusively from the four cultivars with the name Caiño. The other aim of this study was to establish the aromatic profile, in terms of attributes, that identifies the aroma of young wines from Caiño Redondo, Caiño da Terra, Caiño Longo and Caiño Astureses cultivars

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Sandra CORTÉS DIÉGUEZ, Susana RÍO SEGADE, Francisco REGO MARTÍNEZ and Emilia DÍAZ LOSADA

Estación de Viticultura e Enoloxía de Galicia (EVEGA). Ponte San Clodio s/n, Leiro, 32427, Ourense, España

Contact the author

Keywords

Red wines, Sensory analysis, Volatile compounds

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Exploring the presence of oligopeptides in wines into identify possible compounds with umami or kokumi properties

Umami is defined as a pleasant and savory taste derived from glutamate, inosinate and guanylate, which are naturally present in meat, fish, vegetables and dairy products. The term “kokumi” refers to a complex flavour sensation, characterized by thickness, fullness and continuity.

Study of the colour and phenolic evolution of three different tannin/anthocyanin ratios over time in a model wine

Phenolic compounds are important quality indicators in red wine. A large number of polyphenols play an important role in wine development, contributing to the colour and the sensory perception of the wines. Anthocyanins are the pigments responsible for the colour in young red wines while tannins are the principal contributors to the bitterness and the astringency of the wines. Wine polyphenols are considered more complex molecules than grape phenolics, due to the enormous number of chemical reactions which take place during the entire winemaking process and storage, forming more stable compounds.

Teasing apart terroir: the influence of management style on native yeast communities within Oregon wineries and vineyards

Newer sequencing technologies have allowed for the addition of microbes to the story of terroir. The same environmental factors that influence the phenotypic expression of a crop also shape the composition of the microbial communities found on that crop. For fermented goods, such as wine, that microbial community ultimately influences the organoleptic properties of the final product that is delivered to customers. Recent studies have begun to study the biogeography of wine-associated microbes within different growing regions, finding that communities are distinct across landscapes. Despite this new knowledge, there are still many questions about what factors drive these differences. Our goal was to quantify differences in yeast communities due to management style between seven pairs of conventional and biodynamic vineyards (14 in total) throughout Oregon, USA. We wanted to answer the following questions: 1) are yeast communities distinct between biodynamic vineyards and conventional vineyards? 2) are these differences consistent across a large geographic region? 3) can differences in yeast communities be tied to differences in metabolite profiles of the bottled wine? To collect our data we took soil, bark, leaf, and grape samples from within each vineyard from five different vines of pinot noir. We also collected must and a 10º brix sample from each winery. Using these samples, we performed 18S amplicon sequencing to identify the yeast present. We then used metabolomics to characterize the organoleptic compounds present in the bottled wine from the blocks the year that we sampled. We are actively in the process of analysing our data from this study.

Ability of lactic acid bacterial laccases to degrade biogenic amines and OTA in wine

Two of the most harmful microbial metabolites for human health that can be present in wines and either fermented or raw foods are biogenic amines (BA) and ochratoxine A (OTA). Winemakers are aware of the need to avoid their presence in wine by using different strategies, one of them is the use of enzymes. Some recombinant laccases have been characterized and revealed as potential tools to degrade these toxic compounds in wine[1], specifically biogenic amines[2].

Disease‐induced alterations in the reflectance spectrum of grape leaves

Context and purpose of the study ‐ Phytopathogenic diseases impact the development and yield of grapevines, resulting in economical, social and environmental losses.