Terroir 2008 banner
IVES 9 IVES Conference Series 9 Phenolic characterization of four different red varieties with “Caíño” denomination cultivated in Northwestern Spain

Phenolic characterization of four different red varieties with “Caíño” denomination cultivated in Northwestern Spain

Abstract

In this work, these four red varieties were characterized in terms of phenolic composition. Thus, the anthocyanin accumulation and the extractability evolution during ripening were compared. The extractability assays were carried out using similar pH conditions than those involved in winemaking process. Furthermore, seed phenolic maturity was determined in order to obtain information about the tannin aggressiveness. These parameters are of great importance not only for the varietal differentiation but also for the planning and management of winemaking process. On the other hand, the anthocyanin distribution was determined because it permits the assessment of varietal differentiation, being it considered as a taxonomic characteristic.
Total anthocyanin concentration was significantly greater for Caíño Longo variety, while extractable anthocyanin content for this variety was similar than that corresponding to Caíño Astureses variety. Furthermore, the lowest total and extractable anthocyanin concentrations were associated with Caíño Redondo and Caíño da Terra cultivars. Thus, the extraction facility showed good skin ripeness grade only for Caíño Astureses variety. Furthermore, the seed ripeness resulted to be particularly incomplete for Caíño Astureses and Caíño Redondo varieties, which indicates their worse adaptation to the “terroir”. Malvidin glucoside was the majority anthocyanin in all the varieties studied, excepting the Caíño da Terra variety. The Caíño Longo cultivar showed results statistically higher, while the Caíño da Terra cultivar presented the lowest values of this compound.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Susana RÍO SEGADE, Sandra CORTÉS DIÉGUEZ, Emilia DÍAZ LOSADA

Estación de Viticultura e Enoloxía de Galicia (EVEGA). Ponte San Clodio s/n, Leiro, 32427-Ourense, España

Contact the author

Keywords

Caíño, phenolic characterization, anthocyanin, accumulation, extractability

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

The role of climate/soil of different zones/terroirs on grape characteristics

According to the different concern of the ‘traditional’ and the ‘new’ wine-producing Countries, a variable importance is recognized to the climate/soil and to grapevine cultivars as factors affecting the wine quality. However, the viticultural experience can state that, within each area, climate and soil plays an incontestable role in affecting grape quality, and consequently wine quality, as well as the genetic characteristics of the cultivar.

Updating the Winkler index: An analysis of Cabernet sauvignon in Napa Valley’s varied and changing climate

This study aims to create an updated, agile viticultural climate index (similar to the Winkler Index) by performing in-depth analyses of current and historical data from industry partners in several major winegrowing regions. The Winkler Index was developed in the early twentieth century based on analysis of various grape-growing regions in California. The index uses heat accumulation (i.e. Growing Degree Days) throughout the growing season to determine which grape varieties are best suited to each region. As viticultural regions are increasingly subject to the complexity and uncertainty of a changing climate, a more rigorous, agile model is needed to aid grape growers in determining which cultivars to plant where. For the first phase of this study, 21 industry partners throughout Napa Valley shared historical phenology, harvest, viticultural practice, and weather data related to their Cabernet sauvignon vineyard blocks. To complement this data, berry samples were collected throughout the 2021 growing season from 50 vineyard blocks located throughout 16 American Viticultural Areas that were then analyzed for basic berry chemistry and phenolics. These blocks have been mapped using a Geographic Information System (GIS), enabling analysis of altitude, vineyard row orientation, slope, and remotely sensed climate data. Sampling sites were also chosen based on their proximity to a weather station. By analyzing historical data from industry partners and data specifically collected for this study, it is possible to identify key parameters for further analysis. Initial results indicate extreme variability at a high spatial resolution not currently accounted for in modern viticultural climate indices and suggest that viticultural practices play a major role. Using the structure of data collection and analyses developed for the first phase, this project will soon be expanded to other wine regions globally, while continuing data collection in Napa Valley.

Cover crops influence on soil N availability and grapevine N status, and its relationship with biogenic

The type of soil management, tillage versus cover crops, can modify the soil microbial activity, which causes the mineralization of organic N to NO3–N and, therefore, may change the soil NO3–N availability in vineyard. The soil NO3–N availability could influence the grapevine nutritional status and the grape amino acid composition. Amino acids are precursors of biogenic amines, compounds mainly formed during the malolactic fermentation. Biogenic amines have negative effects on consumer health and on the wine organoleptic quality. The objective was to study if the effect of conventional tillage and two different cover crops (leguminous versus gramineous) on grapevine N status, could relate to the wine biogenic amines composition.

Main viticultural soils in Castilla – La Mancha (Spain)

Castilla-La Mancha is the biggest vineyard in the world. Once similar soils have been identified in Castilla-La Mancha (soil

When organic chemistry contributes to the understanding of metabolism mechanisms

Many compounds of interest in wine are difficult to analyze since they are present in very small quantities or they are unstable. The need for reliable data led scientists to develop complex method in order to overcome the analytical difficulties and provide accurate quantitative data for grape or wine characterization.