Terroir 2008 banner
IVES 9 IVES Conference Series 9 Volatile fraction of young Cabernet Sauvignon from Santa Catarina State, a new terroir in Brazil

Volatile fraction of young Cabernet Sauvignon from Santa Catarina State, a new terroir in Brazil

Abstract

A total of 52 volatile compounds were measured in varietal Cabernet Sauvignon wines from four sites in Santa Catarina State (Brazil), over two consecutive vintages (2004 and 2005). Concentrations were measured by gas chromatography using FID, FPD and mass spectrometry as detectors. Principal Component Analysis of the concentrations of the varietal compounds showed a strong dependence on the characteristics of the soil in the vineyards (p<0.05). In contrast, little differentiation of the fermentative aromatic compounds was found in each vintage at all the sites. The levels of α- ionone (violet note) and β-ionone (violet, berry notes) were inversely related. ß-ionone was found above its threshold concentration (90 ng/l) in all samples except Bom Retiro 2004 vintage. α-Ionone was found to be well below its threshold concentration (400 ng/l) in all the samples. Only the Bom Retiro wines have higher concentrations of α- ionone than β-ionone, in both vintages. This indicates that these compounds can be markers for differentiating these Cabernet Sauvignon wines. The vineyard soils were classified as Inceptisols (for São Joaquim A, São Joaquim B, Bom Retiro vineyards) and as Oxisols (for Videira vineyard), according to U.S.D.A. classification of soil taxonomy.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Leila D. FALCÃO (1) Gilles DE REVEL (2), Maire Claire PERELLO, Laurent REQUIER (2), Antônio A.
A. UBERTI (4), Marilde T. BORDIGNON-LUIZ (1)

(1) Departamento de Ciência e Tecnologia de Alimentos CAL/CCA/UFSC, Rodovia Admar Gonzaga, 1346, Itacorubi, 88034-001, Florianópolis-SC – Brazil
(2) UMR 1219 Œnologie, Université Victor Segalen Bordeaux 2, INRA, ISVV, Faculté d’Œnologie, 351 Cours de la Libération, F-33405 Talence cedex, France
(3) Empresa de Pesquisa e Extensão Agropecuária de Santa Catarina (EPAGRI-SC)- Videira-Brazil
(4) Departamento de Engenharia Rural, CCA/UFSC, Florianópolis-SC – Brazil

Contact the author

Keywords

Cabernet Sauvignon wine; aromatic composition; GC/FID/FPD/MS analysis; principal component analysis, soil type

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Under-vine management effects on grapevine vegetative growth, gas exchange and rhizosphere microbial diversity

The use of cover crops under the vines might be an alternative to the use of herbicides or tillage, improving grapevine quality and soil characteristics. The aim of this research was to study the implications of different management strategies of the soil under the vines (herbicide, cultivation or cover crops) on grapevine growth, water and nutritional status, gas exchange parameters and belowground microbial communities.
The experimental design consisted in 4 treatments applied on 35L-potted Tempranillo vegetative grapevines with 10 replicates each grown in an open-top greenhouse in 2022 and 2023. Treatments included two cover crop species (Trifolium fragiferum and Bromus repens), herbicide (glyphosate al 36%) and an untreated control.

Barrels ad-hoc: Spanish oak wood classification by NIRs 

The wooden barrel is a key factor in enology, since wine chemical composition and sensory properties changes significantly in contact with the barrel[1]. Today’s highly competitive market constantly demands new differentiated products and wineries search innovations continuously.
Wood selection is crucial: barrels stability to keep constant their contribution and the result on products, and additional and differentiated wood contributions to impact their new products. Oak wood selection has traditionally been carried out using parameters such as specie, location and grain, however, it goes one step further nowadays. Large cooperage work with non-destructive techniques that allow classifying oak wood quickly and easily according to their organoleptic contribution[2].

Rationalizing The Wine Nucleophilic Competition For Quinone Addition

loss and color browning which lead to wine unacceptance by consumers. These changes are mainly driven by the consumption of oxygen by polyphenols leading to the production of quinones which are oxidant compounds. Quinones can react with numerous nucleophilic compounds notably aromatic thiols, decreasing the aromatic bouquet of the wine.

Advancement of grape maturity – comparison between contrasting varieties and regions

Grapevine phenology has advanced across many regions, nationally and internationally, in recent decades under the influence of increasing temperatures, resulting in earlier
vintages (Jones and Davis, 2000, Petrie and Sadras, 2008, Tomasi et al., 2011, Webb et al., 2011. Earlier vintages have several ramifications for the wine industry. There are direct implications on quality, due to the fruit ripening during the hotter conditions of summer and early autumn, which then impacts grape composition and wine style (Sadras et al., 2013, Buttrose et al., 1971, Mira de Ordũna, 2010). There are also indirect implications where the fruit is perceived to ripen at a faster rate and the crop reach optimum maturity over a shorter period (Coulter et al., 2016).

Application of UV-B radiation in pre- and postharvest as an innovative and sustainable cultural practice to improve grape phenolic composition

Ultraviolet radiation (UVR) is a minor part of the solar spectrum, but it represents an important ecological factor that influences many biological processes related to plant growth and development. In recent years, the application of UVR in agriculture and food production is emerging as a clean and environmentally friendly technology.
In grapevine, many studies have been conducted on the effects of ambient levels of UVR, but there are few considering the effects of UV-B application on grape phenolic composition under commercial growing or postharvest conditions.