Terroir 2008 banner
IVES 9 IVES Conference Series 9 Volatile fraction of young Cabernet Sauvignon from Santa Catarina State, a new terroir in Brazil

Volatile fraction of young Cabernet Sauvignon from Santa Catarina State, a new terroir in Brazil

Abstract

A total of 52 volatile compounds were measured in varietal Cabernet Sauvignon wines from four sites in Santa Catarina State (Brazil), over two consecutive vintages (2004 and 2005). Concentrations were measured by gas chromatography using FID, FPD and mass spectrometry as detectors. Principal Component Analysis of the concentrations of the varietal compounds showed a strong dependence on the characteristics of the soil in the vineyards (p<0.05). In contrast, little differentiation of the fermentative aromatic compounds was found in each vintage at all the sites. The levels of α- ionone (violet note) and β-ionone (violet, berry notes) were inversely related. ß-ionone was found above its threshold concentration (90 ng/l) in all samples except Bom Retiro 2004 vintage. α-Ionone was found to be well below its threshold concentration (400 ng/l) in all the samples. Only the Bom Retiro wines have higher concentrations of α- ionone than β-ionone, in both vintages. This indicates that these compounds can be markers for differentiating these Cabernet Sauvignon wines. The vineyard soils were classified as Inceptisols (for São Joaquim A, São Joaquim B, Bom Retiro vineyards) and as Oxisols (for Videira vineyard), according to U.S.D.A. classification of soil taxonomy.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Leila D. FALCÃO (1) Gilles DE REVEL (2), Maire Claire PERELLO, Laurent REQUIER (2), Antônio A.
A. UBERTI (4), Marilde T. BORDIGNON-LUIZ (1)

(1) Departamento de Ciência e Tecnologia de Alimentos CAL/CCA/UFSC, Rodovia Admar Gonzaga, 1346, Itacorubi, 88034-001, Florianópolis-SC – Brazil
(2) UMR 1219 Œnologie, Université Victor Segalen Bordeaux 2, INRA, ISVV, Faculté d’Œnologie, 351 Cours de la Libération, F-33405 Talence cedex, France
(3) Empresa de Pesquisa e Extensão Agropecuária de Santa Catarina (EPAGRI-SC)- Videira-Brazil
(4) Departamento de Engenharia Rural, CCA/UFSC, Florianópolis-SC – Brazil

Contact the author

Keywords

Cabernet Sauvignon wine; aromatic composition; GC/FID/FPD/MS analysis; principal component analysis, soil type

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Impact of oenological tannins on microvinifications affected by downy mildew

AIM: Vine diseases are still responsible for economic losses. Previous study in our laboratory, have shown effects of oenological tannins against Botrytis cinerea1,2. According to this, the aim was to evaluate the wine protection by oenological tannins against an another disease, the downy mildew. METHODS: During the 2020 vintage, infected grapes by downy mildew (Vitis vinifera cv. Merlot) were collected from the dispositive ResIntBio. The 100 kg were crushed, destemmed and dispatch into 10 aluminium tanks. SO2 was added at 3 g/hL. Oenological tannins (grape, quebracho, ellagitannin or gallotannin) were added at 100 g/hL into eight different tanks (4×2 tanks). The two last tanks were considered as control without addition of oenological tannins. Alcoholic fermentation was achieved with Actiflore 33® at 20 g/hL. Malolactic fermentation was achieved with Lactoenos B7at 1 g/hL. Finished wines were sulfited to obtain 45 mg/L of total SO2.

‘Cabernet Sauvignon’ (Vitis vinifera L.) berry skin flavonol and anthocyanin composition is affected by trellis systems and applied water amounts

Trellis systems are selected in wine grape vineyards to mainly maximize vineyard yield and maintain berry quality. This study was conducted in 2020 and 2021 to evaluate six commonly utilized trellis systems including a vertical shoot positioning (VSP), two relaxed VSPs (VSP60 and VSP80), a single high wire (SH), a high quadrilateral (HQ), and a guyot (GY), combined with three levels of irrigation regimes based on different crop evapotranspiration (ETc) replacements, including a 25% ETc, 50% ETc, and 100% ETc. The results indicated SH yielded the most fruits and accumulated the most total soluble solids (TSS) at harvest in 2020, however, it showed the lowest TSS in the second season. In 2020, SH and HQ showed higher concentrations in most of the anthocyanin derivatives compared to the VSPs. Similar comparisons were noticed in 2021 as well. SH and HQ also accumulated more flavonols in both years compared to other trellis systems. Overall, this study provides information on the efficacy of trellis systems on grapevine yield and berry flavonoid accumulation in a currently warming climate.

Free and bound terpene profile of recovered minority white grape varieties by GC × GC-TOFMS

Climate change presents a significant challenge for actual viticulture. In this context, recovering minority grape varieties can be a crucial strategy to ensure resilience, particularly those capable of maintaining quality and aromatic complexity under water stress.

Recent advances in our understanding of the impact of climate change on wine grape production

According to the last IPCC report, the scale of recent climate changes are unprecedented over many centuries. Each of the last four decades has been successively warmer than any decade since 1850. Projections for the future foresee that temperature could reach +3.3°C to +5.7°C under the most pessimistic scenario. It is also projected that every region will face more concurrent and multiple changes in climatic impact-drivers. The frequency of extreme climate events is also likely to increase, as well as the occurrence of indirect constraints. These evolving climatic conditions are alrealdy affecting and will continue to affect the suitability of traditional wine grape production areas, but also create opportunities in new locations.

Mesoclimate and Topography influence on grape composition and yield in the AOC Priorat

The Priorat AOC, which is situated behind the coastal mountain range of Tarragona, is characterised by a Mediterranean climate that tends towards continentality and has very little precipitation during the vegetation cycle