Terroir 2008 banner
IVES 9 IVES Conference Series 9 Volatile fraction of young Cabernet Sauvignon from Santa Catarina State, a new terroir in Brazil

Volatile fraction of young Cabernet Sauvignon from Santa Catarina State, a new terroir in Brazil

Abstract

A total of 52 volatile compounds were measured in varietal Cabernet Sauvignon wines from four sites in Santa Catarina State (Brazil), over two consecutive vintages (2004 and 2005). Concentrations were measured by gas chromatography using FID, FPD and mass spectrometry as detectors. Principal Component Analysis of the concentrations of the varietal compounds showed a strong dependence on the characteristics of the soil in the vineyards (p<0.05). In contrast, little differentiation of the fermentative aromatic compounds was found in each vintage at all the sites. The levels of α- ionone (violet note) and β-ionone (violet, berry notes) were inversely related. ß-ionone was found above its threshold concentration (90 ng/l) in all samples except Bom Retiro 2004 vintage. α-Ionone was found to be well below its threshold concentration (400 ng/l) in all the samples. Only the Bom Retiro wines have higher concentrations of α- ionone than β-ionone, in both vintages. This indicates that these compounds can be markers for differentiating these Cabernet Sauvignon wines. The vineyard soils were classified as Inceptisols (for São Joaquim A, São Joaquim B, Bom Retiro vineyards) and as Oxisols (for Videira vineyard), according to U.S.D.A. classification of soil taxonomy.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Leila D. FALCÃO (1) Gilles DE REVEL (2), Maire Claire PERELLO, Laurent REQUIER (2), Antônio A.
A. UBERTI (4), Marilde T. BORDIGNON-LUIZ (1)

(1) Departamento de Ciência e Tecnologia de Alimentos CAL/CCA/UFSC, Rodovia Admar Gonzaga, 1346, Itacorubi, 88034-001, Florianópolis-SC – Brazil
(2) UMR 1219 Œnologie, Université Victor Segalen Bordeaux 2, INRA, ISVV, Faculté d’Œnologie, 351 Cours de la Libération, F-33405 Talence cedex, France
(3) Empresa de Pesquisa e Extensão Agropecuária de Santa Catarina (EPAGRI-SC)- Videira-Brazil
(4) Departamento de Engenharia Rural, CCA/UFSC, Florianópolis-SC – Brazil

Contact the author

Keywords

Cabernet Sauvignon wine; aromatic composition; GC/FID/FPD/MS analysis; principal component analysis, soil type

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Electrochemical approaches in wine analysis 

There is a high demand in the wine industry for analytical methods able to provide useful information to support the decision-making process in the vineyard and in the winery. Ideally these methods should be rapid (e.g.

The sensory profile of astringency: application on Sangiovese wines

One of the main sensory characteristics of red wine is astringency, which can be defined as drying, puckering and roughing of the oral cavity after the exposure to tannin-rich wines. Tannins are the main responsible for the intensity of the sensation as well for the qualitative aspects of astringency. However, the total intensity of the sensation is not sufficient to fully characterize red wine astringency. Thirty-three different subqualities (Gawel et al. 2001) had been generated to describe the complexity of this multi perceptual phenomenon, which includes both tastes, tactile, and flavor sensations. So, how to feel tannins during tasting? In this study, we used a sensory method that combine the training for astringency subqualities with touch-standards and the CATA questions, usually applied in consumer science, to evaluate the astringency subqualities of different typologies of Sangiovese: commercial and experimental wines. Sangiovese wine represents a good model for the study of astringency because it is generally characterized by a high content of low and high molecular weight proantocyanidins. Commercial wines differed for percentage of Sangiovese (80-100 %) grapes used in winemaking and for designation (Toscana TS, Chianti Classico CH, Chianti Riserva CR, Morellino di Scansano MS). The astringency profile of wines changed as the percentage of Sangiovese increased. Positive subqualities as velvet, soft, mouthcoat, and rich highly characterized the Sangiovese wine belonging to TS and CR designations. Moreover, the astringency subqualities related to blending or wood aging, represented the drivers of quality of commercial Sangiovese wines.

Perception, liking and emotional response of tropical fruit aromas in Chardonnay wines

Tropical fruit aromas in wines are thought to be important to wine consumers, although there is little research to confirm this statement. With so many wine styles available, it has become important to understand the qualities that are desirable to consumers and how to achieve those qualities. Thiols and esters are compounds that have been found to cause tropical fruit aromas in chardonnay (ref). Fermentation temperature gradients and skin contact were found to increase these compounds using micro scale fermentations. This work aimed to scale up these fermentations/operations to determine if the desired tropical fruit aromas could still be achieved and if there is a perceivable difference in tropical fruit aromas, liking, and emotional response in the wines at the consumer level.

Preliminary study of the influence of ripening on the polysaccharide content of different red grape varieties

Grape skin has a barrier and protective function in grapes. Cell wall of grape skins is mainly composed of polysaccharides such as pectins, celulloses and hemicelluloses and structural proteins. Terroir, variety and changes during ripening can affect the content of polysaccharides in grapes. The aim of this study was to evaluate the content of polysaccharides (PS) in grapes along the ripening process. Three red grape varieties were studied: Garnacha (G), Tempranillo (T) and Prieto Picudo (PP).

FOLIAR APPLICATION OF METHYL JASMONATE AND METHYL JASMONATE PLUSUREA: INFLUENCE ON PHENOLIC, AROMATIC AND NITROGEN COMPOSITION OFTEMPRANILLO WINES

Phenolic, volatile and nitrogen compounds are key to wine quality. On one hand, phenolic compounds are related to wine color, mouthfeel properties, ageing potential. and are associated with beneficial health properties. On the other hand, wine aroma is influenced by hundreds of volatile compounds. Fermentative aromas represent, quantitatively, the wine aroma, and among these volatile compounds, esters, higher alcohols and acids are mainly responsible for the fermentation bouquet.