OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Coming of age: do old vines actually produce berries with higher enological potential than young vines? A case study on the Riesling cultivar

Coming of age: do old vines actually produce berries with higher enological potential than young vines? A case study on the Riesling cultivar


Consumers and the wine industry tend to agree on the ability of old vines to produce fruit that allows the production of wine of superior character. However, despite past and ongoing research, objective evidence of this point of view is still debated and studies on robust, specifically dedicated plots are scarce.

Thus the impact of grapevine age on berry oenological potential and wine quality remains an open question. To try to objectively address the issue, a unique vineyard was established at Geisenheim University, Germany. It was planted in 1971 with cv. Riesling grafted on 5C Teleki. In 1995 and 2012, several rows were uprooted and replanted with the same rootstock/scion combination, resulting in a vineyard with alternate rows of identical plant material, but with different planting dates. The parameters of technical maturity and grape composition at harvest were analyzed during seasons 2014, 2015, 2016 and 2017 combining HPLC and enzymatic methods. Separate micro-vinifications were made for each age group and wine composition was analyzed by a combination of 1H-NMR and SPE-GC-MS.

The results showed that technical maturity parameters (TSS, TA, must pH) were not significantly different across the three grapevine age groups. Berry composition showed little differences in quality-relevant metabolite contents, with the noticeable exceptions of α-amino acid, skin flavonols, free and bound monoterpene and norisoprenoid amounts that were significantly higher in vines planted in 2012 compared to older vines, but only in seasons 2014 and 2015 where soil management practices of the young vines differed. Berries from vines planted in 1971 and 1995 did not exhibit significant differences in berry composition, throughout the four seasons. Wine chemical analysis complemented and confirmed results obtained in berry composition. Wine made from grapes produced by vines planted in 2012 had higher terpene and norisoprenoid amounts, compared to wines made with grapes from the two other vines groups, but only for the 2014 and 2015 vintages. Wines from grapes produced by vines planted in 1971 and 1995 did not exhibit significant differences in composition throughout the four seasons.


In conclusion, even though vines planted in 2012 exhibits significant differences in berry and wine composition for their two first vintages compared to older ones, these differences appeared to vanished once the vines were fully established and soil management practices became uniform.


This work was supported by a PhD grant to K. Bou Nader from the Forschungsring Deutscher Weinbau.


Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article


Khalil Bou Nader (1, 2), Ghislaine Hilbert (1), Doris Rauhut (3), Christel Renaud (1), Otmar Löhnertz (4), Claus-Dieter Patz (5), Rainer Jung (6), Hans-Reiner Schultz (7), Manfred Stoll (2), Eric Gomes (1) 

1 UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, ISVV, Villenave d’Ornon, France 
2 Hochschule Geisenheim University (HGU), Department of General and Organic Viticulture,, Von-Lade-Str. 1, 65366, Geisenheim, Germany 
3 Hochschule Geisenheim University (HGU), Department of Microbiology and Biochemistry, Von-Lade-Str. 1, 65366, Geisenheim, Germany 
4 Hochschule Geisenheim University (HGU), Department of Soil Sciences and Plant Nutrition 
5 Hochschule Geisenheim University (HGU), Department of Beverage Sciences, Von-Lade-Str. 1, 65366, Geisenheim, Germany 
6 Hochschule Geisenheim University (HGU), Department of Oenology, Von-Lade-Str. 1, 65366, Geisenheim, Germany 
7 Hochschule Geisenheim University (HGU), Presidency; Von-Lade-Str. 1, 65366, Geisenheim, Germany

Contact the author


Grapevine age, vineyard management, berry composition, primary and secondary metabolites


IVES Conference Series | OENO IVAS 2019


Related articles…

Genotypic differences in early-stage root architectural traits and consequences for water uptake in three grapevine rootstocks differing in drought tolerance

Root architecture (RSA), the spatial-temporal arrangement of a root system in soil, is essential for edaphic resources acquisition by the plant, and thus contributes largely to its productivity and adaptation to environmental stresses, particularly soil water deficit. In grafted grapevine, while the degree of drought tolerance induced by the rootstock has been well documented in the vineyard, information about the underlying physiological processes, particularly at the root level, is scarce, due to the inherent difficulties in observing large root systems in situ. The aims of this study were (i) to determine the phenotypic differences in traits related to root distribution and morphology along the substrate profile in different Vitis rootstocks during early growth, (ii) to assess the plasticity of these traits to soil water deficit and (iii) to quantify their relationships with plant water uptake.

Quantification of the production of hydrogen peroxide H2O2 during wine oxidation

Chemical studies aiming at assessing how a wine reacts towards oxidation usually focus on the characterization of wine constituents, such as polyphenols, or oxidation products. As an alternative, the key oxidation intermediate hydrogen peroxide H2O2 has never been quantified, although it plays a pivotal role in wine oxidation. H2O2 is obtained from molecular oxygen as the result of a first cascade of oxidation reactions involving metal ions and polyphenols. The produced H2O2 then reacts in a second cascade of oxidation to produce reactive hydroxyl radicals that can attack almost any chemical substrate in wine.

Influence of must fining on wine pinking: relationship between electrochemical and colorimetric measurements and pinking attitude of wine

“Pinking” is a term used to define an abnormal pink coloration assumed by white wines in certain cases. Despite the are many hypotheses about the causes of this phenomenon, pinking still represents an issue for the wine industry. In the absence of reliable preventive strategies, wineries often rely on treatments such as charcoal fining, which is also negatively impacting wine aroma. This study aims at evaluating the potential of different fining agents based on animal or vegetal proteins to prevent wine pinking when applied at the level of must clarification. The work was carried out on Lugana wines, which is well-recognised as sensible to pinking problems. METHODS: Two experimental Lugana musts were obtained by applying a standard winemaking protocol and were then clarified with different commercial preparations based on vegetal proteins or casein, alone or in combination with PVPP. A control only using pectolytic enzyme was also prepared. Finings were carried out at 4°C for 16h, and the clear must (200 NTU) was then fermented in controlled conditions.

Evaluation of intra-vineyard spatial and temporal variability of leaf area index using multispectral images obtained by satellite (Landsat 8, Sentinel-2) and unmanned aerial vehicle platforms

Estimation of vineyard leaf area index (LAI) is an important aspect for the winegrowers. However, tracking and monitoring are difficult tasks due to time constraints. Satellite and unmanned aerial vehicle (UAV) imaging have become a practical monitoring method for LAI. Nevertheless, for a proper LAI determination, the image’s spatial resolution is a key factor, since low-resolution images are incapable of distinguishing between adjacent vines due to the large area covered in each pixel, this leads to misinterpretation or generalisation of vineyard information.

Enzyme treatments during pre-fermentative maceration of white winegrapes: effect on volatile organic compounds and chromatic traits

Volatile organic compounds (VOCs) are very important for the characterisation and quality of the final white wine. An oenological practice to increase the extraction of aroma compounds is the cold pre-fermentative maceration [1,2], although it may also release phenolic compounds that confer darker chromatic traits to white wines, not appreciated by consumers. This practice could be improved by the use of enzymes in order to facilitate the release of the odorous molecules. In this study, the effect of different enzyme treatments during skin contact on the chromatic characteristics and volatile composition of white musts from four winegrape varieties was evaluated.