Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Global approach and application of terroir studies: product typicity and valorisation 9 A study on the oenological potentiality of the territory of a cooperative winery in Valpolicella (Italy)

A study on the oenological potentiality of the territory of a cooperative winery in Valpolicella (Italy)

Abstract

A 3-year zoning study promoted by the Cooperative Winery Valpolicella (Negrar, Verona, Italy) was carried out on a wine territory of about 500 ha. The aim was to individuate the oenological potential of the vineyards of associated growers in order to improve in general the quality of the wines and in particular to increase the production of premium wines (Amarone and Recioto). The zoning will be also used to apply differentiate payments of the grapes to the associated growers according to the production areas. On the basis of the results obtained from 12 reference vineyards it was possible to individuate zones at high and low oenological potential and to suggest a partition of the territory on the basis of the global performance of the vineyards taking into account 3 elements of economical relevance: yield, wine quality and technological quality of the grapes (drying aptitude).

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

GIULIVO C. (1), MORARI F. (1), PITACCO A. (1), TORNIELLI GB (2)

(1) Dipartimento Agronomia Ambientale e Produzioni Vegetali, Università di Padova, Italia
(2) Dipartimento di Scienze, Tecnologie e Mercati della Vite e del Vino, Università di Verona, Italia

Contact the author

Keywords

grapevine, zoning, Valpolicella, cv Corvina

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Zoning mountain landscapes for a valorisation of high identity products

Mountain agriculture is made difficult by the geomorphological complexity of the territory. This is especially true for viticulture: over the centuries the work of men in such a difficult environment

Tasting soils in Pinot noir wines of the Willamette valley, Oregon

The conventional wisdom of vintners is that alkalinity, and thus less sour and more rounded taste, are enhanced in wine and grapes challenged by low-nutrient soils.

Elucidating vineyard site contributions to key sensory molecules: Identification of correlations between elemental composition and volatile aroma profile of site-specific Pinot noir wines

The reproducibility of elemental profile in wines produced across multiple vintages has been previously reported using grapes from a single scion clone of Vitis vinifera L. cv. Pinot noir. The grapevines were grown on fourteen different vineyard sites, from Oregon to southern California in the U.S.A., which span distances from approximately hundreds of meters to 1450 km, while elevations range from near sea level to nearly 500 m. In addition, sensorial (i.e. aroma, taste, and mouthfeel) and chemical (i.e. polyphenolic and volatile) differences across the different vineyard sites have also been observed among these wines at two aging time points. While strong evidence exists to support that grapes grown in different regions can produce wines with unique chemical and sensorial profiles, even when a single clone is used, the understanding of growing site characteristics that result in this reproducible differentiation continues to emerge. One hypothesis is that the elemental profile that a vineyard site imparts to the grape berries and the resulting wine is an important contributor to this differentiation in chemistry and sensory of wines. For example, various classes of enzymes that catalyze the formation of key aroma compounds or their precursors require specific metals. In this work, we begin to report correlations between elemental and volatile aroma profiles of site-specific Pinot noir wines, made under standardized winemaking conditions, that have been previously shown to be distinguished separately by these chemical analyses.

Key odorants responsible for the sensory spaces defining the different aroma potentials of Grenache and Tempranillo grapes

There are yet many gaps in our knowledge about the aroma potential of winemaking grapes and its measurement. Trying to bring some light into this question, a new general strategy based on the accelerated hydrolysis of reconstituted phenolic and aromatic fractions (PAFs) extracted from grapes has been developed

Chemical markers in wine related to low levels of yeast available nitrogen in the grape

Nitrogen is an important nutrient of yeast and its low content in grape must is a major cause for sluggish fermentations. To prevent problems during fermentation, a supplementation of the must with ammonium salts or more complex nitrogen mixtures is practiced in the cellar. However this correction seems to improve only partially the quality of wine [1]. In fact, yeast is using nitrogen in many of its metabolic pathways and depending of the sort of the nitrogen source (ammonium or amino acids) it produces different flavor active compounds. A limitation in amino acids can lead to a change in the metabolic pathways of yeast and consequently alter wine quality.