Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Global approach and application of terroir studies: product typicity and valorisation 9 A study on the oenological potentiality of the territory of a cooperative winery in Valpolicella (Italy)

A study on the oenological potentiality of the territory of a cooperative winery in Valpolicella (Italy)

Abstract

A 3-year zoning study promoted by the Cooperative Winery Valpolicella (Negrar, Verona, Italy) was carried out on a wine territory of about 500 ha. The aim was to individuate the oenological potential of the vineyards of associated growers in order to improve in general the quality of the wines and in particular to increase the production of premium wines (Amarone and Recioto). The zoning will be also used to apply differentiate payments of the grapes to the associated growers according to the production areas. On the basis of the results obtained from 12 reference vineyards it was possible to individuate zones at high and low oenological potential and to suggest a partition of the territory on the basis of the global performance of the vineyards taking into account 3 elements of economical relevance: yield, wine quality and technological quality of the grapes (drying aptitude).

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

GIULIVO C. (1), MORARI F. (1), PITACCO A. (1), TORNIELLI GB (2)

(1) Dipartimento Agronomia Ambientale e Produzioni Vegetali, Università di Padova, Italia
(2) Dipartimento di Scienze, Tecnologie e Mercati della Vite e del Vino, Università di Verona, Italia

Contact the author

Keywords

grapevine, zoning, Valpolicella, cv Corvina

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Rootstock selection moderates the effect of rising temperatures through drought tolerance and modulation of stomatal conductance

Climate change is increasing crop evapotranspiration and reducing water availability, especially in the Mediterranean area.

Exploring the resistance of non-Saccharomyces wine yeasts to dehydration-rehydration processes

AIM: The use of non-Saccharomyces (NS) yeasts in multi-starter fermentations with S. cerevisiae is a trend in the wine industry, but the number of strains commercially available in a powder formulation, such as active dry yeasts (ADY), is still limited.

OPTIMISATION OF THE AROMATIC PROFILE OF UGNI BLANC WINE DISTILLATE THROUGH THE CONTROL OF ALCOHOLIC FERMENTATION

The online monitoring of fermentative aromas provides a better understanding of the effect of temperature on the synthesis and the loss of these molecules. During fermentation, gas and liquid phase concentrations as well as losses and total productions of volatile compounds can be followed with an unprecedented acquisition frequency of about one measurement per hour. Access to instantaneous production rates and total production balances for the various volatile compounds makes it possible to distinguish the impact of temperature on yeast production (biological effect) from the loss of aromatic molecules due to a physical effect³.

Updating the Winkler index: An analysis of Cabernet sauvignon in Napa Valley’s varied and changing climate

This study aims to create an updated, agile viticultural climate index (similar to the Winkler Index) by performing in-depth analyses of current and historical data from industry partners in several major winegrowing regions. The Winkler Index was developed in the early twentieth century based on analysis of various grape-growing regions in California. The index uses heat accumulation (i.e. Growing Degree Days) throughout the growing season to determine which grape varieties are best suited to each region. As viticultural regions are increasingly subject to the complexity and uncertainty of a changing climate, a more rigorous, agile model is needed to aid grape growers in determining which cultivars to plant where. For the first phase of this study, 21 industry partners throughout Napa Valley shared historical phenology, harvest, viticultural practice, and weather data related to their Cabernet sauvignon vineyard blocks. To complement this data, berry samples were collected throughout the 2021 growing season from 50 vineyard blocks located throughout 16 American Viticultural Areas that were then analyzed for basic berry chemistry and phenolics. These blocks have been mapped using a Geographic Information System (GIS), enabling analysis of altitude, vineyard row orientation, slope, and remotely sensed climate data. Sampling sites were also chosen based on their proximity to a weather station. By analyzing historical data from industry partners and data specifically collected for this study, it is possible to identify key parameters for further analysis. Initial results indicate extreme variability at a high spatial resolution not currently accounted for in modern viticultural climate indices and suggest that viticultural practices play a major role. Using the structure of data collection and analyses developed for the first phase, this project will soon be expanded to other wine regions globally, while continuing data collection in Napa Valley.

Acumulación de materia seca, orientada a valorar la fijación de carbono, en función del aporte de riego y la pluviometría, en Cabernet-Sauvignon a lo largo de 15 años

The vineyard is capable of fixing carbon in its permanent structure from atmospheric carbon dioxide, through the process of gas exchange and the performance of photosynthesis. The photosynthetic capacity of the vineyard depends on the water resources that the plant may have at its disposal, so the amount of dry matter, derived from the processed photosynthates, that it can store will depend on the water regime of the crop, both in the annually renewable organs as in permanent parts.