Composition of grape grown on different Homogenous Terroir Units (HTU)

Abstract

This paper was based on the soil maps units from Ribera de Duero viticulture and wine Denomination of Origin that defined different Homogeneous “Terroir” Units (HTU) with potentially diverse oenological qualities. The main aim of this study was the study of possible correlations between HTU categories and the development and quality of the wine grapes cultivated on specified HTUs. Five vineyards from three different optimum HTUs were selected for this study. Selection criteria were grape variety, clone, rootstocks, age, training systems and cultural practices, trying to select the most similar vineyards.
Samples of 25Kg were manually harvested, from each one of the 15 selected vineyards. The grapes were harvest at the degree of technological maturity as similar as it was possible. Technological maturity is correlated with adequate levels of sugar, acidity and phenolic content, so that good sanitary stages and even good levels of aroma precursor compounds. So, composition of grapes was evaluated considering all these parameters, however this paper showed only partial results, showing levels of sugar, acidity variables (pH, titrable or total acidity and content of malic acid), and phenolic compounds (several phenolic families were considered: total polyphenols, anthocyanins, catechin and flavanol levels). This work will be completed with future studies that will be carried out in future vintages.
Obtained data showed that, even having a large variance among vineyards of the studied Homogeneous Terroir Units, was possible to detect significant differences on the composition and oenological quality of the grapes of each UHT.

 

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

M.L. GONZALEZ-SANJOSE (1), M.D. RIVERO (1), M. BLEOJU (1) and V. GOMEZ-MIGUEL (2)

(1) Department of Biotechnology and Food Science. University of Burgos. 09001 Burgos, Spain
(2) Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Spain

Keywords

Terroir, zoning, grape quality, soil units

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Reconstructing ancient microbial fermentation genomes from the wine residues of Herod, Roman king of Judea

The fortress of the Herodium, built towards the end of the first century BCE/ante Cristo, on the orders of Herod the Great, Roman client king of Judea, attests the expansion of Roman influence in the eastern Mediterranean. During archaeological excavations of the Herodium in 2017[1], a winery was discovered on the ground floor of the palace, with an assortment of clay vessels in situ, including large dolia – clay fermentation vessels each capable of fermenting up to 300-400 L of wine. Thanks to the recent progresses in the field of paleogenomics[2], we could analyse the organic material consistent with grape pomace at the bottom of these vessels, by extracting and sequencing the DNA using shotgun metagenomics and targeted capture, aiming for enrichment of DNA from fermentation associated microbes.

Sustainable geographical indications? Inclusion of sustainability criteria in the Denomination of Origin Campos de Cima da Serra, Brazil

The objective of this study is to assess the potential for integrating sustainability guidelines into Geographical Indications of wine, especially in the case of the Denomination of Origin Campos de Cima da Serra (CCS), Brazil.

Harnessing whole genome sequencing data to predict protein structure and function variation in grapevine

Grapevine (Vitis vinifera) is amongst the world’s most cultivated fruit crops, and of global and economic significance, producing a wide variety of grape-derived products, including wine, and table grapes. The genus Vitis, encompassing approximately 70 naturally occurring inter-fertile species, exhibits extensive genetic and phenotypic diversity, highlighted by the global cultivation of thousands of predominantly Vitis vinifera cultivars. Despite the importance of harnessing its naturally occurring genetic diversity to pursue traits of interest, especially considering the continued and growing demand for sustainable high-quality grape production, the systematic characterization of available functional genetic variants remains limited.

Modeling the suitability of Pinot Noir in Oregon’s Willamette Valley in a changing climate

Air temperature is the key driver of grapevine phenology and a significant environmental factor impacting yield and quality for a winegrape growing region. In this study the optimal downscaled CMIP5 ensemble for computing thegrowing season average temperature (GST) viticulture climate classification index was determined to spatially compute on a decadal basis predictions of the GST climate index and the grapevine sugar ripeness (GSR) model for Pinot Noir throughout the Willamette Valley (WV) American Viticultural Area (AVA). Forecasts for average temperature and a 220 g/L target sugar concentration level were computed using daily Localized Constructed Analogs (LOCA) downscaled CMIP5 historic and Representative Concentration Pathways (RCP) future climate projections of minimum and maximum daily temperature. We explore spatiotemporal trends of the GST climate classification index and Pinot Noir specific applications of the GSR phenology model for the WV AVA. Spatiotemporal computations of the GST climate index and Pinot Noir specific applications of the GSR model enable the opportunity to explore relationships between their computed values with one intent being to provide updated GST ranges that better align with current temperature-based modeling understanding of Pinot Noir grapevine phenology and the viticultural application of LOCA CMIP5 climate projections for the WV AVA. The Pinot Noir specific applications of the GSR model or the GST index with updated bounds indicate that the percent of the WV AVA area suitable for Pinot Noir production is currently at or near its peak value in the upper 80s to lower 90s of this century.

USE OF COLD LIQUID STABULATION AS AN OENOLOGICAL TECHNIQUE IN WHITE WINEMAKING: EFFECTS ON PHENOLIC, AROMATIC AND SENSORIAL COMPOSITION

The application of different winemaking techniques helps to modify the basic parameters, phenolic profile, and aroma components influencing the final wine quality. In particular, pre-fermentative processes aim to increase the extraction and preservation of grape native compounds. Among them, cold liquid stabulation (macération sur bourbes) consists in maintaining the grape juice on its lees, in suspended condition at low temperature (0-8 °C) for a variable time (generally from 7 to 21 days). The aim of this work is to apply the cold liquid stabulation on two Italian white grape varieties, Arneis and Cortese, to evaluate the impact on basic parameters, color, polyphenolic compounds (TPI), antioxidant power (DPPH), total polysaccharides, and free and glycosylated volatile compounds (GC-MS analysis) during and after the process.