Great highlands wine growing terroir: conditions and expressions

Abstract

During 1982 started our wine growing project at the Puntalarga Hill, between 2500 and 2600 meters a.s.l.: 5.78 ºN, 72.98 ºW. Pinot noir, white Riesling and Riesling x Silvaner crossings are the most planted grapevines. Since 1984 research and development activities are carried out on pertinent subjects.
Low latitude, high altitude, relatively low rainfall, frequent atmospheric transparency, determines intensity and spectral composition of incident solar radiation, day/night temperature change extent and low night values that are the tropical highland’s climate features of the region.
Coexistence over the year of all grapevine developmental stages and the production of vintages with good sugar content and acidity levels, suitable for the production of wine remarkable in aroma and color intensity, are possible under those conditions.
Vine behavior and grape and wine characteristics indicate that at low respiratory losses, local climatic conditions could be considered thermally equivalent to those of temperate wine growing regions, with similar Huglin’s index values. At the localization of the project, the climatic conditions over the year are similar to those of autumnal ripening time in a temperate climate. At the same time acting solar radiation is UV-B rich. Both factors result in special features of local grapes that could be considered as being terroir expressions.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

MARCO QUIJANO – RICO

Viñedo & Cava Loma de Puntalarga, Nobsa, Colombia, P.O. Box / A.P. 048 Sogamoso

Contact the author

Keywords

altitude, radiation, température, maturation, originalité

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Can soil nitrate explain polyphenol and anthocyanin content in vineyard with similar available soil water regime? 

Nitrogen (N) is quite important nutrient in grapevine development and must quality, but under Mediterranean climatic conditions, available soil water (ASW) during grapevine development can also influence vigour and must quality. The aim was to determine the influence of soil nitrate (NO3-) availability on N foliar, yield, and must quality in vineyards with similar available water holding capacity (AWC). For this purpose, four cv. Tempranillo (Vitis vinifera L.) vineyards were selected. All of them are placed in Uruñuela municipality (La Rioja, Spain), separated less than 2.5 km and in a slope <1 %, in soils with similar soil chemistry properties and with similar rooting depth (ranging between 105 cm and 110 cm).

An operational model for capturing grape ripening dynamics to support harvest decisions

Grape ripening is a critical phenophase during which many metabolites driving wine quality are accumulated in berries. Major changes in berry composition include a rapid increase in sugar and a decrease in malic acid content and concentration. Its duration is highly variable depending on grapevine variety, climatic parameters, soil type and management practices.

Evolution of grapeseed composition during maturation and characterization of its impact on wine compound using molecular networks

Usually the winemaker consider the grapeberry maturity as an actor of the wine quality. Grape seed are frequently used as a marker to assess the grape maturity. The first aim of this study is to obtain a better understanding of the impact of grape seed maturity on the grape seed and grape berry composition.

Insight on Lugana flavor with a new LC-MS method for the detection of polyfunctional thiols

The analysis of polyfunctional thiols in wine is challenging due to their low abundance and instability within a complex matrix. However, volatile thiols are highly aroma-active, making their accurate quantification in wine at low concentrations crucial [1].

Development and validation of a standardized oxidation assay for the accurate measurement of the ability of different wines to form “de novo” oxidation-related aldehydes

From the standpoint of wine aroma oxidation there are two effects observed: aroma degradation of oxygen sensitive compounds (polyfunctional mercaptans) and the appearance of new substances with high aromatic power (acetaldehyde, methional, phenylacetaldehyde, sotolon, alkenals, isobutanal and 2, 3-metylbutanals) (1-5). According to our experience, Strecker aldehydes are compounds with highest sensory relevance in the oxidative degradation of many wines (5-7).