Great highlands wine growing terroir: conditions and expressions

Abstract

During 1982 started our wine growing project at the Puntalarga Hill, between 2500 and 2600 meters a.s.l.: 5.78 ºN, 72.98 ºW. Pinot noir, white Riesling and Riesling x Silvaner crossings are the most planted grapevines. Since 1984 research and development activities are carried out on pertinent subjects.
Low latitude, high altitude, relatively low rainfall, frequent atmospheric transparency, determines intensity and spectral composition of incident solar radiation, day/night temperature change extent and low night values that are the tropical highland’s climate features of the region.
Coexistence over the year of all grapevine developmental stages and the production of vintages with good sugar content and acidity levels, suitable for the production of wine remarkable in aroma and color intensity, are possible under those conditions.
Vine behavior and grape and wine characteristics indicate that at low respiratory losses, local climatic conditions could be considered thermally equivalent to those of temperate wine growing regions, with similar Huglin’s index values. At the localization of the project, the climatic conditions over the year are similar to those of autumnal ripening time in a temperate climate. At the same time acting solar radiation is UV-B rich. Both factors result in special features of local grapes that could be considered as being terroir expressions.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

MARCO QUIJANO – RICO

Viñedo & Cava Loma de Puntalarga, Nobsa, Colombia, P.O. Box / A.P. 048 Sogamoso

Contact the author

Keywords

altitude, radiation, température, maturation, originalité

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Grape seed flavanols extraction and mechanical-acoustic properties as influenced by maceration time and ethanol content

AIM: Grape flavanols are involved in wine quality markers such as in-mouth sensations and colour stability.

Uncovering the influence of vineyard management on fungal community structure and functional diversity within above-ground compartments

In viticulture, microbial communities – particularly fungi – play a vital role in plant health, disease management, and grape quality.

Preliminary results on the effect of different organic mulching on wine polyphenol content

Soil mulching is an interesting strategy to reduce soil evaporation, assist in weed control, improve soil structure and organic content, increase soil water infiltration, and decrease diurnal temperature fluctuations

La région viticole Cotnari (Roumanie) et ses vins dans l’ensemble des grandes régions viticoles européennes

The author presents the geographical position of Romania as a vine-growing European country and analyses its relief and climate as factors of paramount importance for vine-growing environments. The climatogram system and the oenoclimatic aptitude index are applied in an analysis of the climatic characteristics of the Romanian vine-growing reg ions.

Characterization and modelling of water flow on vineyard soil. Effect of compaction and grass cover

In the Burgundy vineyard, frequent tractor traffic and management of inter-rows alternating grass cover and chemical weed-control lead to structural soil contrast between row and inter-row. The aim of this study was to characterize and model water flow in relation with topsoil structure modifications induced by these practices. Void ratio of the different soil volumes were determined using bulk density measurements.