Great highlands wine growing terroir: conditions and expressions

Abstract

During 1982 started our wine growing project at the Puntalarga Hill, between 2500 and 2600 meters a.s.l.: 5.78 ºN, 72.98 ºW. Pinot noir, white Riesling and Riesling x Silvaner crossings are the most planted grapevines. Since 1984 research and development activities are carried out on pertinent subjects.
Low latitude, high altitude, relatively low rainfall, frequent atmospheric transparency, determines intensity and spectral composition of incident solar radiation, day/night temperature change extent and low night values that are the tropical highland’s climate features of the region.
Coexistence over the year of all grapevine developmental stages and the production of vintages with good sugar content and acidity levels, suitable for the production of wine remarkable in aroma and color intensity, are possible under those conditions.
Vine behavior and grape and wine characteristics indicate that at low respiratory losses, local climatic conditions could be considered thermally equivalent to those of temperate wine growing regions, with similar Huglin’s index values. At the localization of the project, the climatic conditions over the year are similar to those of autumnal ripening time in a temperate climate. At the same time acting solar radiation is UV-B rich. Both factors result in special features of local grapes that could be considered as being terroir expressions.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

MARCO QUIJANO – RICO

Viñedo & Cava Loma de Puntalarga, Nobsa, Colombia, P.O. Box / A.P. 048 Sogamoso

Contact the author

Keywords

altitude, radiation, température, maturation, originalité

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

The effect of wine matrix on the initial release of volatile compounds and their evolution in the headspace

There is evidence in the literature that non-volatile wine matrix can modify the release and therefore the perception of the compounds involved in wine aroma [1-3].

Grapevine yield-gap: identification of environmental limitations by soil and climate zoning in Languedoc-Roussillon region (south of France)

Grapevine yield has been historically overlooked, assuming a strong trade-off between grape yield and wine quality. At present, menaced by climate change, many vineyards in Southern France are far from the quality label threshold, becoming grapevine yield-gaps a major subject of concern. Although yield-gaps are well studied in arable crops, we know very little about grapevine yield-gaps. In the present study, we analysed the environmental component of grapevine yield-gaps linked to climate and soil resources in the Languedoc Roussillon. We used SAFRAN data and IGP Pays d’Oc wine yields from 2010 to 2018. We selected climate and soil indicators proving to have a significant effect on average wine yield-gaps at the municipality scale. The most significant factors of grapevine yield were the Soil Available Water Capacity; followed by the Huglin Index and the Climatic Dryness Index. The Days of Frost; the Soil pH; and the Very Hot Days were also significant. Then, we clustered geographical zones presenting similar indicators, facilitating the identification of resources yield-gaps. We discussed the number of zones with the experts of IGP Pays d’Oc label, obtaining 7 zones with similar limitations for grapevine yield. Finally, we analysed the main resources causing yield-gaps and the grapevine varieties planted on each zone. Mapping grapevine resource yield-gaps are the first stage for understanding grapevine yield-gaps at the regional scale.

The soil application of a plant-derived protein hydrolysate speeds up selectively the ripening-specific processes in table grape

Grapevine is one of the most extensively cultivated fruit crops, playing a crucial role in the economies of many grape-growing regions around the world.

Mannoproteins from oenological by-products as tartaric stabilization and color agents in white and red wines

Climate change is drastically modifying grape composition and wine quality. As consequence, must and wines are becoming unbalanced, with high sugar concentration, increased alcohol content, lower acidity, excessive astringency, color instability and also a rise in the incidence of tartaric instability is being showed.

Is your juice truly organic? An isotopic approach for certifying organic grape juice

The sustainability and authenticity of grape juice production have gained increasing attention, particularly regarding the environmental impact and health benefits of organic practices.