terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Characterization of a Sémillon clonal population: exploring genetic diversity, metabolomic profiles, and phenotypic variations

Characterization of a Sémillon clonal population: exploring genetic diversity, metabolomic profiles, and phenotypic variations

Abstract

Sémillon is a cultivated grape variety known for contributing to dry and sweet white wine production. However, only seven approved clones have been officially recognized in France[1]. In this study, we aimed to characterize the genetic diversity and metabolomic profiles of a Sémillon clonal population, shedding light on the potential variations within this important grape variety.

Through Illumina whole genome sequencing of 53 Sémillon clones, we observed various genetic variations, including single nucleotide polymorphisms (SNPs), providing comprehensive insights into their diversity and genomic variations. Additionally, metabolic profiling of berries was established with a combination of chemical and Liquid Chromatography-Mass Spectrometry (LC-MS) analysis, allowing to quantify key quality-related parameters such as pH, acidity, sugar content and volatile thiol precursor compounds. Remarkably, our findings revealed significant variations among Sémillon clones, leading to their placing in three distinct clusters.

Moreover, phenotypic evaluations highlighted variations in mid-veraison dates, cluster yield, and berry weight. These findings have practical implications for winemakers and vineyard managers, enabling informed decisions in selecting specific clones with desirable traits to achieve desired wine styles and adapt to specific environments and market demands.

To unravel the underlying mechanisms behind the observed metabolomic and phenotypic variation within this Sémillon clonal population, comprehensive investigations of global metabolome profiles, epigenetic variations, and virome of the Sémillon clones will be conducted. Through the implementation of multi-omics approaches, we aim to obtain a comprehensive understanding of the Sémillon clonal population, unraveling complex regulatory networks and identifying factors that drive the unique characteristics of clones. This integrative approach will expand our knowledge beyond individual components and provides valuable insights into the intricate interplay among key players at various biological levels.

Acknowledgements: This study received financial support from the French government, to the University of Bordeaux as an Initiative of Excellence, under the France 2030 plan, for the GPR Bordeaux Plant Sciences.

References:

1) Catalogue of grapevines cultivated in France. http://plantgrape.plantnet-project.org

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Maryam Khalili1*, Pierre-François Bert1, Jean Pascal Goutouly1,2, Armelle Marais3, Thierry Candresse3, Maria Lafargue1, Christel Renaud1, Philippe Darriet4, Ghislaine Hilbert-Masson1, Philippe Gallusci1,Pierre Pétriacq3, Sabine Guillaumie1, Nathalie Ollat1, Josep Valls Fonayet4, Cécile Tibon4 and Eric Gomès1

1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33140 Villenave d’Ornon, France
2 Unité Expérimentale Vigne Bordeaux 1442, INRAE, 33140 Villenave d’Ornon, France

3 Univ. Bordeaux, INRAE, UMR 1332 BFP, 33140 Villenave D’Ornon, France
4 Enology, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33140 Villenave d’Ornon, France

Contact the author*

Keywords

Sémillon, genomics, metabolomics, diversity

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The potential of some native varieties of Argentina for the production of sparkling wines. Effect of lees contact time 

Grapevine varieties from South-America, commonly known as criollas, originated because of the natural crossbreeding of grapevine varieties brought by the Spaniards. The objective of this work was to evaluate the potential of some varieties to produce sparkling wines considering the effect of lees contact time. The following varieties were used: Moscatel Rosado, Criolla Chica, Pedro Gimenez, Blanca Oval, Canelón, and the European variety Chardonnay (control), planted in the ampelographic collection of EEA Mendoza INTA (Argentina). Pilot-scale vinifications were carried out to obtain the base wines, in 20 L glass containers. The second fermentation was performed through the traditional method.

The tolerance of grapevine rootstocks to water deficit is related to root morphology and xylem anatomy traits 

Climate change is altering water balances, thereby compromising water availability for crops. In grapevine, the strategic selection of genotypes more tolerant to soil water deficit can improve the resilience of the vineyard under this scenario. Previous studies demonstrated that root anatomical and morphological traits determine vine performance under water deficit conditions. Therefore, 13 ungrafted rootstock genotypes, 6 commercial (420 A, 41 B, Evex 13-5, Fercal, 140 Ru y 110 R), and 7 from new breeding programs (RG2, RG3, RG4, RG7, RG8, RG9 and RM2) were evaluated in pots during 2021 and 2022.

Influence of irrigation frequency on berry phenolic composition of red grape varieties cultivated in four spanish wine-growing regions

The global warming phenomenon involves the frequency of extreme meteorological events accompanied by a change in rainfall distribution. Irrigation frequency (IF) affects the spatial and temporal soil water distribution but its effects on the phenolic composition of the grape have been scarcely studied. The aim of this work was to evaluate the effects of four deficit irrigation frequencies of 30 % ETo: one irrigation per day (T01), two irrigations per week (T03), one irrigation per week (T07) and one irrigation every two weeks (T15) on berry phenolic composition at harvest.

Application of UV-B radiation in pre- and postharvest as an innovative and sustainable cultural practice to improve grape phenolic composition

Ultraviolet radiation (UVR) is a minor part of the solar spectrum, but it represents an important ecological factor that influences many biological processes related to plant growth and development. In recent years, the application of UVR in agriculture and food production is emerging as a clean and environmentally friendly technology.
In grapevine, many studies have been conducted on the effects of ambient levels of UVR, but there are few considering the effects of UV-B application on grape phenolic composition under commercial growing or postharvest conditions.

Design of microbial consortia to improve the production of aromatic amino acid derived compounds during wine fermentation

Wine contains secondary metabolites derived from aromatic amino acids (AADC), which can determine quality, stability and bioactivity. Several yeast species, as well as some lactic acid bacteria (LAB), can contribute in the production of these aromatic compounds. Winemaking should be studied as a series of microbial interactions, that work as an interconnected network, and can determine the metabolic and analytical profiles of wine. The aim of this work was to select microorganisms (yeast and LAB) based on their potential to produce AADC compounds, such as tyrosol and hydroxytyrosol, and design a microbial consortium that could increase the production of these AADC compounds in wines.