terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Characterization of a Sémillon clonal population: exploring genetic diversity, metabolomic profiles, and phenotypic variations

Characterization of a Sémillon clonal population: exploring genetic diversity, metabolomic profiles, and phenotypic variations

Abstract

Sémillon is a cultivated grape variety known for contributing to dry and sweet white wine production. However, only seven approved clones have been officially recognized in France[1]. In this study, we aimed to characterize the genetic diversity and metabolomic profiles of a Sémillon clonal population, shedding light on the potential variations within this important grape variety.

Through Illumina whole genome sequencing of 53 Sémillon clones, we observed various genetic variations, including single nucleotide polymorphisms (SNPs), providing comprehensive insights into their diversity and genomic variations. Additionally, metabolic profiling of berries was established with a combination of chemical and Liquid Chromatography-Mass Spectrometry (LC-MS) analysis, allowing to quantify key quality-related parameters such as pH, acidity, sugar content and volatile thiol precursor compounds. Remarkably, our findings revealed significant variations among Sémillon clones, leading to their placing in three distinct clusters.

Moreover, phenotypic evaluations highlighted variations in mid-veraison dates, cluster yield, and berry weight. These findings have practical implications for winemakers and vineyard managers, enabling informed decisions in selecting specific clones with desirable traits to achieve desired wine styles and adapt to specific environments and market demands.

To unravel the underlying mechanisms behind the observed metabolomic and phenotypic variation within this Sémillon clonal population, comprehensive investigations of global metabolome profiles, epigenetic variations, and virome of the Sémillon clones will be conducted. Through the implementation of multi-omics approaches, we aim to obtain a comprehensive understanding of the Sémillon clonal population, unraveling complex regulatory networks and identifying factors that drive the unique characteristics of clones. This integrative approach will expand our knowledge beyond individual components and provides valuable insights into the intricate interplay among key players at various biological levels.

Acknowledgements: This study received financial support from the French government, to the University of Bordeaux as an Initiative of Excellence, under the France 2030 plan, for the GPR Bordeaux Plant Sciences.

References:

1) Catalogue of grapevines cultivated in France. http://plantgrape.plantnet-project.org

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Maryam Khalili1*, Pierre-François Bert1, Jean Pascal Goutouly1,2, Armelle Marais3, Thierry Candresse3, Maria Lafargue1, Christel Renaud1, Philippe Darriet4, Ghislaine Hilbert-Masson1, Philippe Gallusci1,Pierre Pétriacq3, Sabine Guillaumie1, Nathalie Ollat1, Josep Valls Fonayet4, Cécile Tibon4 and Eric Gomès1

1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33140 Villenave d’Ornon, France
2 Unité Expérimentale Vigne Bordeaux 1442, INRAE, 33140 Villenave d’Ornon, France

3 Univ. Bordeaux, INRAE, UMR 1332 BFP, 33140 Villenave D’Ornon, France
4 Enology, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33140 Villenave d’Ornon, France

Contact the author*

Keywords

Sémillon, genomics, metabolomics, diversity

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effects of long-term drought stress on soil microbial communities from a Syrah cultivar vineyard

Changes in the rainfall and temperature patterns affect the increase of drought periods becoming one of the major constraints to assure agricultural and crop resilience in the Mediterranean regions. Beside the adaptation of agricultural practices, also the microbial compartment associated to plants should be considered in the crop management. It is known that the microbial community change according to several factors such as soil composition, agricultural management system, plant variety and rootstock.

Development of a new method for detecting acetic acid bacteria in wine

The presence of acetic acid bacteria in wine can lead to the appearance of acetic acid at concentrations above the perception threshold, causing the wine rejection by the consumer. During the winemaking process, avoiding the presence of acetic acid bacteria is very difficult, as there is always a residual population accompanying the wine[1], and the problem arises with the significant development of these microorganisms that metabolizes large amounts of acetic acid.
The concern of wineries to control the presence of acetic acid bacteria in wines during their conservation is due to the absence of simple and effective analyses that allow the detection of these microorganisms in the initial stages.

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Rootstocks not only provide tolerance to Phylloxera, but also ensure the supply of water and mineral nutrients to the whole plant. Rootstocks are an important way of adapting to environmental conditions while conserving the typical features of scion varieties. We can exploit the large diversity of rootstocks used worldwide to aid this adaptation. The aim of this study was to characterise rootstock regulation of scion mineral status and its relation with scion development.

Impact of toasting and botanical origin on oak wood (Q. sp.) volatilome using untargeted GCxGC-ToFMS analysis

Many works have been carried out to identify the key aroma volatile compounds of oak wood (e.g., whisky-lactone, furfural, maltol, eugenol, guaiacol, vanillin) using conventional gas chromatography coupled with olfactometry and mass spectrometry (GC-O-MS). Inspired by recent untargeted approaches in the field of food “omics”, this work aims to extend our knowledge on the impact of cooperage process on the volatile composition of oak wood using two-dimensional comprehensive gas chromatography coupled with time of flight mass spectrometry (GCxGC-ToFMS).

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison. In all solutions were added 1ml/l of Tween 80 ® surfactant.