Modelling grape and wine quality through PLS Spline statistical method

Abstract

Started in 1994, this project intends to explain quality of grapes and wines using data of soil, climate and vineyard that are currently used in field trials. Firstly set at a national scale, it has been transferred to the Aquitaine region in 2000. The work has been conducted by the ITV institute thanks to many other partners. 2 cultivars have been considered: cvs. Merlot and cabernet sauvignon.
A set of data has been collected using different years and plots showing varied environnemental and cultural situations. Data mining used PLS Spline method. 4 models have been produced: sugar and total acids in musts, colour intensity and total polyphenolic compounds in wines. These models point out the variables that are most influent on quality and order them. A validation with plots that have not been used to build the models has been done in 2006. The prediction is of correct level and gives a potential-like result. At the same time, the models have been integrated into a better convenient tool called SPQV 1.1 software. It is aimed to farmers’s advisors.
The models do not give any prediction during the year the grapes are produced, because it uses post-harvest variables. Nevertheless they can be a helpful tool for potential zoning, plots selection or planting advising.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

CLAVERIE M., PRUD’HOMME PY., MONGENDRE J., ZABOLLONE E., RAYNAL M., COULON T. (1), DURAND J.F. (2), MAZEIRAUD JF., RIVES C. (3), LAVAL C. (4), LAPORTE R. (5), FORGET D. (6)

(1) Institut Français de la Vigne et du Vin (ENTAV-ITV France), Station régionale Aquitaine, 39 rue Michel Montaigne, Blanquefort, France
(2) Laboratoire de Probabilités et Statistiques, Université de Montpellier II, Montpellier, France
(3) Chambre d’Agriculture de Lot-et-Garonne, 271 rue de Péchabout, Agen, France
(4) Chambre d’Agriculture de Dordogne, CRDA du Bergeracois, Monbazillac, France
(5) Chambre d’Agriculture des Landes, Mont de Marsan, France
(6) INRA Domaine expérimental de Couhins, Villenave d’Ornon, France

Contact the author

Keywords

vine, quality, model

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Metabolomic discrimination of grapevine water status for Chardonnay and Pinot noir

Water status impact in viticulture has been widely explored, as it strongly affects grapevine physiology and grape chemical composition. It is considered as a key component of vitivinicultural terroir. Most of the studies concerning grapevine water status have focused on either physiological traits, or berry compounds, or traits involved in wine quality. Here, the response of grapevine to water availability during the ripening period is assessed through non-targeted metabolomics analysis of grape berries by ultra-high resolution mass spectrometry. The grapevine water status has been assessed during 2 consecutive years (2019 & 2020), through carbon isotope discrimination on juices from berries collected at maturity (21.5 brix approx.) for 2 Vitis vinifera cv. Pinot noir (PN) and Chardonnay (CH). A total of 220 grape juices were collected from 5 countries worldwide (Italy; Argentina; France; Germany; Portugal). Measured δ13C (‰) varied from -28.73 to -22.6 for PN, and from -28.79 to -21.67 for CH. These results also clearly revealed higher water stress for the 2020 vintage. The same grape juices have been analysed by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) and Liquid Chromatography coupled to Mass Spectrometry (LC-qTOF-MS), leading to the detection of up to 4500 CHONS containing elemental compositions, and thus likely tens of thousands of individual compounds, which include fatty acids, organic acids, peptides, phenolics, also with high levels of glycosylation. Multivariate statistical analysis revealed that up to 160 elemental compositions, covering the whole range of detected masses (100 –1000 m/z), were significantly correlated to the observed gradients of water status. Examples of chemical markers, which are representative of these complex fingerprints, include various derivatives of the known abscisic acid (ABA), such as phaesic acid or abscisic acid glucose ester, which are significantly correlated with higher water stress, regardless of the variety. Cultivar-specific behaviours could also be identified from these fingerprints. Our results provide an unprecedented representation of the metabolic diversity, which is involved in the water status regulation at the grape level, and which could contribute to a better knowledge of the grapevine mitigation strategy in a climate change context.

A stratified sampling approach to investigate the impact of climate and maturity on the aroma and phenolic composition of grenache grapes and wines within the poctefa area

Context and purpose of the study. Climate change is affecting wine production and induces a large variability in wine composition between vintages.

Exploring the factors affecting spatio‐temporal variation in grapevine powdery mildew

The spatial distribution of powdery mildew is often heterogeneous between neighboring plots, with higher disease pressure in certain places

Short-term canopy strategies to enhance grapevine adaptation to climate change

Context and purpose of the study. Viticulture faces significant challenges due to climate change, with increased frequency of extreme weather events impacting grapevine growth, grape quality, and wine production.

Release and perception of γ-nonalactone and massoia lactone in the red wine matrix: impact of ethanol and acidity

Climate change (CC) is altering grape/wine composition, challenging wine sensory quality. Rising temperatures increase grape sugar levels, with higher wine ethanol (EtOH) contents, reduce total acidity (TA) converging with increased pH and lead to the accumulation of CC odorous markers such as γ-nonalactone (γ-C9) and massoia lactone (ML).