Modelling grape and wine quality through PLS Spline statistical method

Abstract

Started in 1994, this project intends to explain quality of grapes and wines using data of soil, climate and vineyard that are currently used in field trials. Firstly set at a national scale, it has been transferred to the Aquitaine region in 2000. The work has been conducted by the ITV institute thanks to many other partners. 2 cultivars have been considered: cvs. Merlot and cabernet sauvignon.
A set of data has been collected using different years and plots showing varied environnemental and cultural situations. Data mining used PLS Spline method. 4 models have been produced: sugar and total acids in musts, colour intensity and total polyphenolic compounds in wines. These models point out the variables that are most influent on quality and order them. A validation with plots that have not been used to build the models has been done in 2006. The prediction is of correct level and gives a potential-like result. At the same time, the models have been integrated into a better convenient tool called SPQV 1.1 software. It is aimed to farmers’s advisors.
The models do not give any prediction during the year the grapes are produced, because it uses post-harvest variables. Nevertheless they can be a helpful tool for potential zoning, plots selection or planting advising.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

CLAVERIE M., PRUD’HOMME PY., MONGENDRE J., ZABOLLONE E., RAYNAL M., COULON T. (1), DURAND J.F. (2), MAZEIRAUD JF., RIVES C. (3), LAVAL C. (4), LAPORTE R. (5), FORGET D. (6)

(1) Institut Français de la Vigne et du Vin (ENTAV-ITV France), Station régionale Aquitaine, 39 rue Michel Montaigne, Blanquefort, France
(2) Laboratoire de Probabilités et Statistiques, Université de Montpellier II, Montpellier, France
(3) Chambre d’Agriculture de Lot-et-Garonne, 271 rue de Péchabout, Agen, France
(4) Chambre d’Agriculture de Dordogne, CRDA du Bergeracois, Monbazillac, France
(5) Chambre d’Agriculture des Landes, Mont de Marsan, France
(6) INRA Domaine expérimental de Couhins, Villenave d’Ornon, France

Contact the author

Keywords

vine, quality, model

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Unprecedented rainfall in northern Portugal

Aim: Climate is arguably one of the most important factors determining the quality of wine from any given grapevine variety. High rainfall during spring can promote growth of the vines but increases the risk of fungal disease, while vineyard operations can be disrupted, as machinery may be prevented from getting in the vineyard owing to muddy soils.

The Soil Component of Terroir

Evidence for a specific effect of soil mineral composition on wine character is largely anecdotal. However, soil potassium supply to the vine must be properly balanced between deficiency and excess for good fruit quality.

NOVEL BENZENETHIOLS WITH PHENOLS CAUSE ASHY, SMOKE FLAVOR PERCEPTION IN RED WINES

Smoke impacts on wines are becoming a worldwide problem; the size and severity of wildfires increasing due to influences from changing climates.¹ For over a century, wines have been known to have a unique issue of absorbing chemical compounds derived from wildfire smoke wherein the flavor of the subsequent wine becomes ashy, rubbery, campfire-like, and smoky.² The economic impacts of a smoke-impacted wine can last for years depending on the grape varietal, costing Oregon and Washington states in the United States over a billion dollars from the 2020 wildfires, as an example.³ While years of research have indicated elevated concentrations of smoke-related compounds, such as guaiacol and syringol, in wines after smoke events, unfortunately, replicating the sensory experience using smoke-associated phenols has not had much success.⁴

Transforming the grapevine world through new breeding techniques

Climate change and environmental degradation are existential threats to europe and the world. One of the most important objectives is to reduce by 2030 the use and the risk of chemical pesticides and fertilisers, reducing nutrient losses and increasing organic farming. Grapevine (vitis spp.) is one of the major and most economically important fruit crops worldwide. It is characterised by high levels of genetic diversity, as result of natural genetic mutations, which are common in grapevines and further assisted by ongoing vegetative propagation.

The impact of Saccharomyces yeasts on wine varietal aroma, wine aging and wine longevity

The objective of the present work is to assess yeast effects on the development of wine varietal aroma throughout aging and on wine longevity.

Three independent experiments were carried out; two fermenting semi-synthetic musts fortified with polyphenols and aroma precursors extracted from Tempranillo (1) or Albariño (2) grapes and with synthetic precursors of polyfunctional mercaptans (PFMs), and a third in which a must, mixture of 6 different grape varieties was used. In all cases, fermentations were carried out by different Saccharomyces cerevisiae strains and one S. kudriavzevii, and the obtained wines were further submitted to anoxic accelerated aging to reproduce bottle aging. The volatile profile of the wines was analyzed using several chromatographic procedures, in order to provide a comprehensive evaluation of wine aroma. Aroma compounds analyzed included fermentation volatile metabolites, grape-derived aroma compounds including PFMs, and Strecker aldehydes (SA).

Results revealed that the effects of yeast on wine aroma throughout its self-life extend along three main axes:

1. A direct or indirect action on primary varietal aroma and on its evolution during wine
aging.

2. The direct production of SA during fermentation and/or their delayed formation by producing the required reagents (amino acids + dicarbonyls) for Strecker degradation
during anoxic aging.

3. Producing acids (leucidic, branched acids) precursors to fruity esters. More specifically, and leaving aside the infrequent de novo formation, the action of the different strains of yeast on primary varietal aroma takes four different forms:

1.- Speeding the hydrolysis of aroma precursors, which leads to early aroma formation without changing the amount of aroma formed. In the case of labile molecules, such as linalool, the enhancement of young wine aroma implies a short-living wine. 2.- Metabolizing the aroma precursor, reducing the amounts of aroma formed, which can be of advantage for negative aroma compounds, such as TDN or guaiacol; 3.- Transforming grape components into aroma precursors, increasing the amounts of aroma formed, as for ethyl cinnamate, leucidic acid or vinylphenols; 4.- Forming reactive species such as vinylphenols able to destroy varietal polyfunctional mercaptans.

Overall, it can be concluded that the yeast carrying alcoholic fermentation not only influences fermentative wine aroma but also affects to the wine varietal aroma, to its evolution during aging and to the development of oxidative off-odors