Terroir 2016 banner
IVES 9 IVES Conference Series 9 Microclimatic differences in fruit zone of vineyards on different elevations of ‘nagy-eged hill’ in eger wine region, Hungary

Microclimatic differences in fruit zone of vineyards on different elevations of ‘nagy-eged hill’ in eger wine region, Hungary

Abstract

The Bull’s Blood of Eger (‘Egri Bikavér’) is one of the most reputed red wines in Hungary and abroad, produced in the Northeastern part of the country. It is known as a ruby blended, full bodied red wine with fruity and aged character. Vitis vinifera L. Kékfrankos (Blaufränkisch) is the base component of the ‘Egri Bikavér’, beside it is the most abundant red grape cultivar of the region and of Hungary. It is grown in many vineyards along the wine region resulting in different wine quality and style depending on slope, elevation, aspect, soil and microclimatic conditions.

Several attempts using GIS technics have been made recently to characterize the most important growing sites in the wine region concerning topographical, soil and climatic conditions. Data of automatic meteorological weather stations located in the vineyards, E-OBS gridded database and the PRECIS regional climate model was also used to better understand the suitability of the vineyards for Kékfrankos quality wine production.

In the present study, we described with a fine scale measurement the fruit zone microclimate (temperature, relative humidity) in three vineyards differing in their elevation on the emblematic ‘Nagy-Eged hill with EasyLog EL USB-2+ temperature and humidity sensors (Lascar Electronics, UK). The elevation of Nagy-Eged hill lower part [NEL] is 294 m, Nagy-Eged hill middle [NEM] is 332 m and Nagy-Eged hill top [NET] is 482 m above sea level. Measurements were taken in 2015 July-October. Mathematical calculation of multiple comparison, i.e. Marascuillo’s procedure was used to distinguish microclimatic differences among different elevations. Day and night time data were separately analyzed.

Concerning the temperature data of Nagy-Eged Hill, we may suppose that the effect of a thermal belt was the principal factor influencing fruit zone temperature, since the warmest area (especially at night) was the middle part of the hill, although the upper part is far steeper, therefore it could receive more solar radiant heat than the others. Soil is richer in gravels, stones on the top of the hill and in the middle part, but the re-radiation heating effect did not exceed that of thermal belt.
Due to the moving of cooler air masses towards the lower part of a valley and the lower wind speed, the air surrounding the vines gets more humid in most part of the growing season. The advantage of dryer air conditions in the middle and top positions of the hill may be benefited by using environmental friendly cultivation technology with less pesticides.
Climate change is a challenge at the Nagy-Eged Hill not only for temperature increase and water shortage, but also for heavy, irregular precipitation that results in serious erosion problem.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Borbála BÁLO (1), Márta LADÁNYI (2), Nikoletta SZOBONYA (1), Péter BODOR (1),Tamás DEÁK, György Dénes BISZTRAY (1)

(1) Department of Viticulture, Szent István University, Budapest, Hungary
(2) Department of Biometrics and Agricultural Informatics, Szent István University,Budapest, Hungary

Contact the author

Keywords

terroir, slope, fruit zone, temperature, humidity, thermal belt

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

From local classification to regional zoning-the use of a geographic information system (GIS) in Franconia/Germany. Part 2: regional zoning of vineyards based on local climatic classifications

En raison des vanations locales d’exposition et de déclivité, l’évaluation climatique des vignobles et des régions viticoles est très important pour la culture des raisins.

Ability of lactic acid bacterial laccases to degrade biogenic amines and OTA in wine

Two of the most harmful microbial metabolites for human health that can be present in wines and either fermented or raw foods are biogenic amines (BA) and ochratoxine A (OTA). Winemakers are aware of the need to avoid their presence in wine by using different strategies, one of them is the use of enzymes. Some recombinant laccases have been characterized and revealed as potential tools to degrade these toxic compounds in wine[1], specifically biogenic amines[2].

Amino nitrogen content in grapes: the impact of crop limitation

As an essential element for grapevine development and yield, nitrogen is also involved in the winemaking process and largely affects wine composition. Grape must amino nitrogen deficiency affects the alcoholic fermentation kinetics and alters the development of wine aroma precursors. It is therefore essential to control and optimize nitrogen use efficiency by the plant to guarantee suitable grape nitrogen composition at harvest. Understanding the impact of environmental conditions and cultural practices on the plant nitrogen metabolism would allow us to better orientate our technical choices with the objective of quality and sustainability (less inputs, higher efficiency). This trial focuses on the impact of crop limitation – that is a common practice in European viticulture – on nitrogen distribution in the plant and particularly on grape nitrogen composition. A wide gradient of crop load was set up in a homogeneous plot of Chasselas (Vitis vinifera) in the experimental vineyard of Agroscope, Switzerland. Dry weight and nitrogen dynamics were monitored in the roots, trunk, canopy and grapes, during two consecutive years, using a 15N-labeling method. Grape amino nitrogen content was assessed in both years, at veraison and at harvest. The close relationship between fruits and roots in the maintenance of plant nitrogen balance was highlighted. Interestingly, grape nitrogen concentration remained unchanged regardless of crop load to the detriment of the growth and nitrogen content of the roots. Meanwhile, the size and the nitrogen concentration of the canopy were not affected. Leaf gas exchange rates were reduced in response to lower yield conditions, reducing carbon and nitrogen assimilation and increasing intrinsic water use efficiency. The must amino nitrogen profiles could be discriminated as a function of crop load. These findings demonstrate the impact of plant balance on grape nitrogen composition and contribute to the improvement of predictive models and sustainable cultural practices in perennial crops.

Climate variability and its effects in the Penedès vineyard region (NE Spain)

This study present a detailed analysis of the rainfall and temperature changes in the Penedès region in the period 1995/ 96 – 2008/09, in comparison with the trends observed during the last 50 years, and its implications on phenology and yield.

Vine field monitoring using high resolution remote sensing images: segmentation and characterization of rows of vines

A new framework for the segmentation and characterization of row crops on remote sensing images has been developed and validated for vineyard monitoring. This framework operates on any high-resolution remote sensing images since it is mainly based on geometric information. It aims at obtaining maps describing the variation of a vegetation index such as NDVI along each row of a parcel.