Terroir 2008 banner
IVES 9 IVES Conference Series 9 Zoning of potential landscape and environment potential of the «Appellation d’Origine Contrôlée Costières de Nîmes»

Zoning of potential landscape and environment potential of the «Appellation d’Origine Contrôlée Costières de Nîmes»

Abstract

The Union defence of the “appellation Costières de Nîmes” hired a reflection on the future of its territory production in the interests of preservation and enhancement. It has launched a study in partnership with the Urban Community Nîmes Métropole and DIREN Languedoc-Roussillon on the cultural and economic values that form the landscape and the environment. The work done in consultation with the players in the area led to the signing of a charter and environmental landscape. The map areas of potential landscape and environment of the “A.O.C. Costières de Nîmes” was one of the first objectives of the charter. This map identifies on the basis of a typology: 
– land of excellence; 
– land under urban influence; 
– land who have lost their agricultural or urban lands. 
This card is an information paper to the actors and agencies territory “Costières” (elected… communities). It aims to take better account of the added production that make up the landscape and the environment. For each type identified, management guidance and support are available to maintain, preserve and enhance the attractiveness of the quality of life, economic strength and promotional landscape and the environment (viewpoints, axes discovery … viticultural landscape). These proposals are intended to ensure a balanced economic development of the territory of appellation. They come in 34 actions included in the charter and environmental landscape of the “appellation Costières de Nîmes”.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

FABBRI Laurence (1), PONZO Nicolas (2)

(1) Atelier Territoires et Paysages (bureau d’études), 9 boulevard Guynemer 30400 Villeneuve les Avignon. France
(2) Syndicat des Costières de Nîmes, 19 Place Aristide Briand 30900 Nîmes. France

Contact the author

Keywords

Costières de Nîmes, terroir, paysage, protection, valorisation

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Redwine project: how to valorize CO2 and effluents from wineries in vineyards and winemaking with microalgae biomass

Global warming due to greenhouse gases (GHG) has become a serious worldwide concern. The new EU green deal aims to achieve GHG emissions reduction by at least 55% by 2030 and a climate neutral eu economy by 2050. The deal strongly encourages GHG reducing measures at local, national and european levels. The redwine project will demonstrate the technical, economic and environmental feasibility of reducing by, at least, 31% of the CO2 eq.

Water deficit differentially impacts the performances and the accumulation of grape metabolites of new varieties tolerant to fungi

The use of resistant varieties is a long-term but promising solution to reduce chemical input in viticulture. Several important breeding programs in Europe and abroad are now releasing a range of new hybrids performing well regarding fungi susceptibility and producing good quality wines. Unfortunately, insufficient attention is paid by the breeders to the adaptation of these varieties to climatic changes, notably to the increased climatic demand and water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD. This study aimed to characterize the different drought-strategies adopted by 6 new resistant varieties selected by INRAE in comparison to Syrah. To allow the assessment of long-term impacts of WD, field-grown vines were exposed to contrasted WD from 2018 to 2021 under a semi-arid Mediterranean climate. A gradient of WD was applied in the field and controlled through plant measurements at the single plant level. Grape development was non-destructively monitored to determine the arrest of berry phloem unloading. The impacts of WD on berry composition, including water, primary metabolites (sugars, organic acids), secondary metabolites (anthocyanins, thiols precursors) and main cations contents, were assessed at this specific stage. Results showed different varietal responses during the year and inter-annual acclimation in terms of plant water use efficiency, biomass accumulation, as well as yield components and berry composition. WD differentially reduced the accumulation of primary metabolites at plant and berry levels, but it little changed their concentrations in the fruits at the ripe stage. Moreover, WD differentially impacted the accumulation of secondary metabolites and major cations between the varieties. In the talk, we’ll present the main results regarding the WD impacts on fruit metabolites and enlarge the reflection about the practical assessment of the grapevine acclimation to WD.

Adapting wine production to climate change through the exploration of the diversity of Vitis vinifera cultivars

Major factors involved in wine quality and typicity are soil type, climatic conditions, plant material (rootstock and cultivar), vineyard management practices and winemaking conditions.

Chenin Blanc Old Vine character: evaluating a typicality concept by data mining experts’ reviews and producers’ tasting notes

Concepts such as typicality are difficult to demonstrate using the limited set of samples that can be subjected to sensory evaluation. This is due both to the complexity of the concept and to the limitations of traditional sensory evaluation (number of samples per session, panel fatigue, the need for multiple sessions and methods, etc.). On the other hand, there is a large amount of data already available, accumulated through many years of consistent evaluation. These data are held in repositories (such as Platter’s Wine Guide in the case of South Africa Wine, wineonaplatter.com) and in technical notes provided by the producers.

The rootstock, the neglected player in the scion transpiration even during the night

Water is the main limiting factor for yield in viticulture. Improving drought adaptation in viticulture will be an increasingly important issue under climate change. Genetic variability of water deficit responses in grapevine partly results from the rootstocks, making them an attractive and relevant mean to achieve adaptation without changing the scion genotype. The objective of this work was to characterize the rootstock effect on the diurnal regulation of scion transpiration. A large panel of 55 commercial genotypes were grafted onto Cabernet Sauvignon. Three biological repetitions per genotype were analyzed. Potted plants were phenotyped on a greenhouse balance platform capable of assessing real-time water use and maintaining a targeted water deficit intensity. After a 10 days well-watered baseline period, an increasing water deficit was applied for 10 days, followed by a stable water deficit stress for 7 days. Pruning weight, root and aerial dry weight and transpiration were recorded and the experiment was repeated during two years. Transpiration efficiency (ratio between aerial biomass and transpiration) was calculated and δ13C was measured in leaves for the baseline and stable water deficit periods. A large genetic variability was observed within the panel. The rootstock had a significant impact on nocturnal transpiration which was also strongly and positively correlated with maximum daytime transpiration. The correlations with growth and water use efficiency related traits will be discussed. Transpiration data were also related with VPD and soil water content demonstrating the influence of environmental conditions on transpiration. These results highlighted the role of the rootstock in modulating water deficit responses and give insights for rootstock breeding programs aimed at identifying drought tolerant rootstocks. It was also helpful to better define the mechanisms on which the drought tolerance in grapevine rootstocks is based on.