Terroir 2008 banner
IVES 9 IVES Conference Series 9 A Viticultural Terroir in Brazil: Change and continuity

A Viticultural Terroir in Brazil: Change and continuity

Abstract

The viticultural terroir at the Serra Gaúcha region, in Rio Grande do Sul State, Brazil, is analyzed under historical and sociological viewpoints, aiming to understand the origin of its characteristics, and the risks for its continuity. This work starts a multidisciplinary research project that, through a gain of comprehension of the regional Man-Nature dynamics, gives to a perception of which are the typical elements of this association, a key factor for its continuity.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Renato De OLIVEIRA (1), Jorge Ricardo DUCATI (2)

(1) Departamento de Sociologia
(2) Centro Estadual de Pesquisas em Sensoriamento Remoto e Meteorologia
Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500 – CEP 91501-970
Porto Alegre, Brésil

Contact the author

Keywords

terroir, vitiviniculture (Brésil), vin et immigration

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Hormonal and associated metabolic changes in susceptible harvest-ripe grapes under asymptomatic and symptomatic Esca disease

Esca complex is a disease affecting grapevine trunks, characterized by the colonization of the wood by xylem-residing fungi (Phaeomoniella chlamydospora, Phaeoacremonium minimum and Fomitiporia mediterranea), and posing significant risks to vineyard longevity since no efficient treatment is available. Despite its prevalence, the mechanisms beyond symptomatic manifestations like interveinal chlorosis and leaf necrosis remain unclear. Preliminary findings indicated a more pronounced metabolic reprogramming in fruits compared to vegetative organs and a putative impact on wine quality by using fruits from symptomatic grapevines.

Water status response of Vitis vinifera L. cv Cabernet Sauvignon during the first years within the long-term VineyardFACE (Free Air Carbon dioxide Enrichment) study 

Understanding grapevine responses to increasing atmospheric CO2 (aCO2) concentrations is crucial for assessing the impact of climate change on viticulture. Previously, at the VineyardFACE (Free Air Carbon dioxide Enrichment) experiment in Geisenheim, leaf gas exchange measurements were made as Vitis vinifera cv. Cabernet Sauvignon established from planting (2014 to 2016) under aCO2 or elevated CO2 (eCO2, aCO2 + 20%) concentrations. Contrary to many preceding observations with grapevines and other perennial plant species the young vines showed an increased intrinsic water use efficiency (WUEi) that was mainly associated with an increase in net assimilation (A) rather than a decrease in stomatal conductance (gs) under eCO2.

Riesling aroma composition in light of changing global temperatures – delving into the effects of warmer nights on the volatile profile of riesling grapes

Climate is a key parameter when the modulation of berry and subsequent wine composition is considered. Recent decades have already seen an increase in global surface temperatures

The grapevine QTLome is ripe: QTL survey, databasing, and first applications

Overarching surveys of QTL (Quantitative Trait Loci) studies in both model plants and staple crops have facilitated the access to information and boosted the impact of existing data on plant improvement activities. Today, the grapevine community is ready to take up the challenge of making the wealth of QTL information F.A.I.R.. To ensure that all valuable published data can be used more effectively, the myriad of identified QTLs have to be captured, standardised and stored in a dedicated public database.
As an outcome of the GRAPEDIA initiative, QTL-dedicated experts from around the world have gathered to compile the grapevine QTLome: the complete information (e.g., map positions, associated phenotypes) describing all experimentally supported QTLs for a specific trait.

Raffinose: a sweet solution for grapevine drought tolerance

Water tolerance in plants is often associated with the accumulation of osmotic protectants, which are secondary metabolites that can help the plant to cope with water stress. One of the key osmotic protectants is a sugar called Raffinose, which is synthesized by a family of enzymes called Raffinose synthases. In this work, we focused on one of these enzymes, VviRAF2, which is a gene that shows different expression levels and genetic variants (SNPs) among different grapevine cultivars, ranging from tolerant to susceptible to water stress, and the transcription factors that may regulate the expression of this gene family.